

Air Conditioning Futura Fan Coil Units

ISO 9001 - Cert. n° 0545/2 Unit heaters Radiant panels Fan coils Air handling units Flues

Air Conditioning

ENVIRONMENTAL COMFORT

CONTENTS

 FSC version with centrifugal fan 	Page 4
 FST version with tangential fan 	Page 20
 FSR home version with tangential fan 	Page 36
• Electronic controls for FSC, FST, FSR versions	Page 44
Accessories	Page 58
 Crystall Sabiana electrostatic filter 	Page 65
 Electronic controls for Crystall FS 	Page 82

FuturaSabiana is the fan coil that continues the Sabiana tradition based on high reliability and low noise levels.

FuturaSabiana is the result of great commitment in terms of energy and resources to offer a more modern product from every point of view:

• **Design:** Sabiana proposes a fan coil with an absolutely innovative design which is a patented decorative model. A fan coil with such developed aesthetics constructed with **continuous and rounded curves** was never been designed before.

For the first time the Futura fan coil has the casing made almost completely of **plastic**, apart from the front panel. This allows an exceptional and continuous attention to details.

Even **the controls**, both on board and remote for wall installation, have been completely re-designed to perfectly match the equipment and the surrounding environment.

• Quietness: Sabiana exploited all its research and development skills to reduce the noise level of this fan coil. This aspect is increasingly important both for designers and end users.

The result is an extremely low noise level both on the FSC model with centrifugal fan and on the FST model with tangential fan, as proved by the Eurovent certification.

• Range: the FuturaSabiana series is absolutely unique: no other fan coil comes with such a wide range of models, that includes versions with a centrifugal or tangential fan as well as the "home" series with reduced lenght and depth. Moreover, all the Sabiana fan coils can be equipped with the patented Crystall electrostatic filter, of electronic type, which offers in a single appliance the

functions of air purification and treatment. The FuturaSabiana fan coils are available on demand in a wide range of colours and are equipped with every kind of accessoires and controls to meet all electronic and installation needs.

• **Easy use:** every detail has been carefully studied to guarantee **easy** assembly, use and maintenance of the fan coils, like for instance the functional symmetric feet, the wide valve space (170 mm) and easy access to the filter in all models. Moreover each version has **the same internal structure**, identical in both horizontal and vertical models, in order to standardize production and guarantee a greater flexibility in distribution and installation.

NEW PLASTIC OUTLET GRID IN ONE SINGLE PIECE: EXTRAORDINARY DESIGN AND STRENGTH

FSC version with centrifugal fan

For its most traditional version, Sabiana focused its attention on design, optimization of practicality as well as on noise level reduction.

This fan coil, based on a traditional technology, offers excellent environmental comfort.

- 7 sizes (300 1400 m³/h)
- 1 battery: 3 or 4 rows
- 2 batteries: 3 or 4 rows (cooling)
- and 1 row (heating) • 5 versions: (MV, IV, MO, IO, MVB)

5 sizes (300 - 1000 m³/h)

• 1 battery: 3 or 4 rows

3 or 4 rows (cooling)

and 1 row (heating)

(MV, IV, MO, IO, MVB)

• 4 sizes (180 - 500 m³/h)

• 1 battery: 2 rows • 1 version: MV

• 2 batteries:

• 5 versions:

Futura SABIANA

Page 4

FSC version with tangential fan

The series FST is equipped with an exclusive tangential fan assembly which has a 120 mm diameter, the largest one on this kind of unit. Its special spiral shape guarantees a perfect and continuous airflow on the whole battery surface, optimizes thermal exchange and avoids the annoying "pumping" effect of other kinds of tangential fans.

The noise level has been remarkably reduced, as proved by the Eurovent certification.

FSC home version with tangential fan

The series FSR is designed to be equipped with tangential fan and the units are of smaller dimensions for smaller environments (depth 18 cm).

FuturaSabiana is the ideal equipment for offices and houses, is no longer a simple technical product but also a furnishing element that can give added value to the aesthetics of the surroundings.

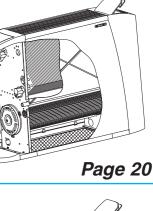
Crystal Sabiana electrostatic filter

The Crystall Sabiana electrostatic filter matches the need for better air conditioning with the concepts of space and design. With this filter the various stages of air treatment are combined in one appliance. Thanks to this new patented filter, air pollutants such as cigarette smoke, dust, pollen and most biological organisms are eliminated.

In addition, as fresh air is not being introduced to obtain the best climatic conditions, there are consequential energy savings.

Page 36

Sabiana take part to the Eurovent program of fan coil performance certification. The official figures are published in the Eurovent web site (www.eurovent-certification.com). The tested performances are:


· Water pressure drop


- · Cooling total emission at the following conditions:
 - Water temperature +7°C E.W.T. +12°C L.W.T.
 - Entering air temperature +27°C dry bulb +19°C wet bulb
- Heating emission (2 pipe units) at the following conditions:
 - Entering water temperature +50°C
 - Entering air temperature +20°C
 - Water flow rate as for the cooling conditions

· Fan absorption

- · Cooling sensible emission at the following conditions:
- Water temperature +7°C E.W.T. +12°C L.W.T. - Entering air temperature +27°C dry bulb +19°C wet bulb
- Heating emission (4 pipe units) at the following conditions:
- Water temperature +70°C E.W.T. +60°C L.W.T.
- Entering air temperature +20°C

Page 65

Construction

Outer casing

Made from strong synthetic lateral corners and from galvanized and prepainted frontal steel sheet. The plastic top grid has fixed louvres and is reversible in order to distribute the air in two different directions. **Standard colours:**

- lateral corners and top grid: Pantone 427C (light grey)
- frontal sheet: RAL 9003 (white)
- other colours on request.

Inner casing

Made from galvanized steel with closed cell insulation.

Filter

The filtration medium is a washable synthetic fibre, efficiency of 73% and the filter frame is made of galvanized steel. Special plastic sliding guides allow for easy insertion and removal of the filter.

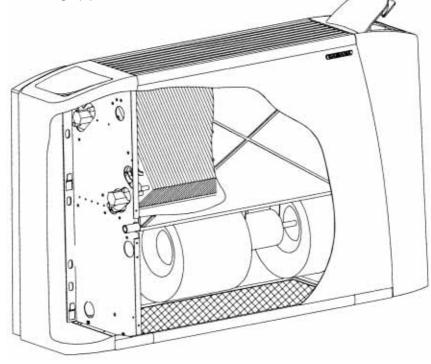
Fan assembly

The fans have aluminium blades directly keyed on the motor with double aspiration and they are dinamically and statically balanced during manufacture in order to have an extremely quiet operation.

Electric motor

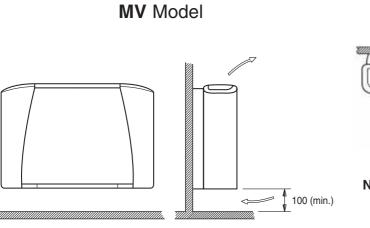
The motor is wired for single-phase and has four speeds, three of which are connected. The motor is fitted on sealed for life bearings and is secured on antivibration and self-lubricating mountings. Protection IP 21, class B.

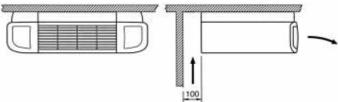
Heat exchanger

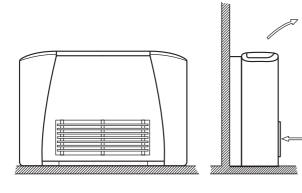

It is manufactured from drawn copper tube and the aluminium fins are mechanically bonded onto the tube by an expansion process. The coil has two 1/2 inch BSP internal connections and 1/8 inch BSP air vent and drain. Flow and return pipe connections are situated at the same end on the left side looking at the unit. On request we can deliver the unit with the connections on the right end side. This operation can also be easily carried out on site during installation.

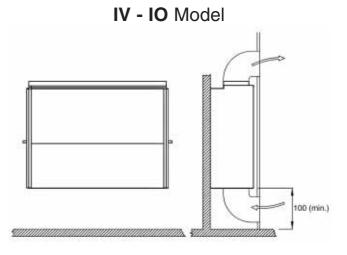
Condensate collection tray

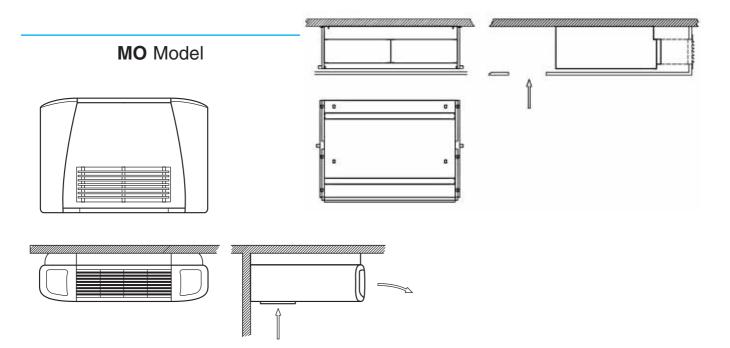
Made from plastic with an "L" shape fitted on the inner casing. The outside diameter of the condensate discharge pipe is 15mm.


Controls and Accessories

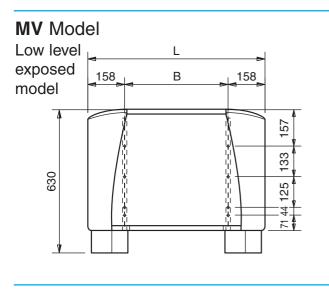

See pages 44 - 64.

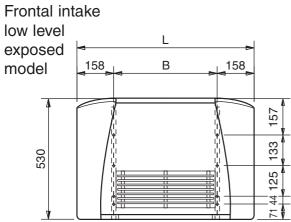

Model styles

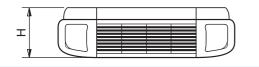


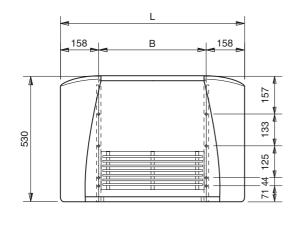

Note: to connect MV exposed model units to wall remote controls use the MV terminal adaptor kit Code 9060103.

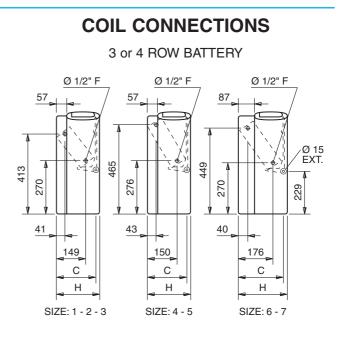
MVB Model

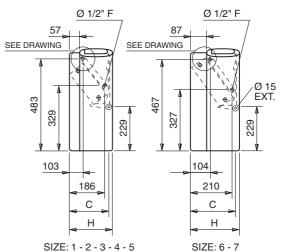




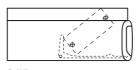



Dimensions, Weight, Water contents


MVB Model



1 ROW SUPPLEMENTARY BATTERY

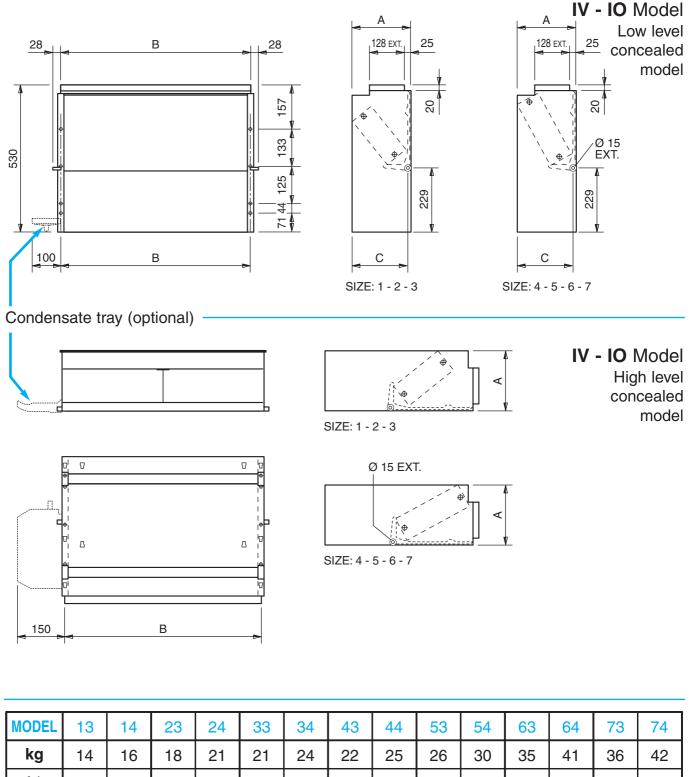


MOD. 1/5 483 MOD. 6-7 467

1 ROW BATTERY CONNECTION

Ø 1/2" F

MO Model High level exposed model


SIZE: 1 - 2 - 3

SIZE: 4 - 5 - 6 - 7

FSC Version

Futura SABIANA

kg	14	16	18	21	21	24	22	25	26	30	35	41	36	42
۱*	0.6	0.8	0.9	1.3	1.3	1.7	1.6	2.2	1.7	2.4	1.9	2.8	1.9	2.8
Α	2	18	21	18	21	18	2	8	21	218		18	24	18
В	4	54	66	69	884		884		10	99	10	99	10	99
L	7	70	98	35	12	00	12	00	14	15	14	15	14	15
н	22	25	22	25	22	25	22	25	22	25	25	55	25	55
С	20	06	20	06	206		206		206		23	36	23	36

* Coil water contents (Litres)

EUROVENT Certification

Futura SABIANA

2 pipe units.

FSC Version

The following standard rating conditions are used:

COOLING

Entering air temperature $+ 27^{\circ}C \text{ d.b.}$, $+ 19^{\circ}C \text{ w.b.}$ Water temperature $+ 7/12^{\circ}C$

HEATING

Entering air temperature $+ 20^{\circ}$ C Entering water temperature $+ 50^{\circ}$ C water flow rate as for the cooling conditions

MODEL		F	SC 1	3	FSC 23		FSC 33		FSC 43		FSC 53		53	F	SC 6	63	F	SC 7	73			
Speed		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Air flow	m³/h	190	240	300	290	360	450	380	480	600	480	600	750	650	800	1000	750	950	1200	850	1100	1400
Cooling total emission	kW	1,10	1,30	1,50	1,80	2,15	2,50	2,47	2,90	3,50	2,90	3,44	4,00	3,60	4,15	4,80	4,30	5,08	5,95	4,75	5,70	6,70
Cooling sensible emission	kW	0,83	1,00	1,25	1,39	1,68	2,10	1,95	2,35	2,95	2,21	2,68	3,35	2,67	3,24	4,05	3,30	4,00	5,00	3,76	4,56	5,70
Heating	kW	1,40	1,70	2,06	2,30	2,70	3,30	3,00	3,70	4,45	3,65	4,35	5,20	4,70	5,50	6,50	5,50	6,70	8,00	6,21	7,50	9,07
∆P Cooling	kPa	2,6	3,5	4,6	7,9	10,6	14,1	7,0	9,7	12,9	10,0	13,5	17,9	16,8	18,2	27,8	12,0	16,0	21,1	16,6	22,6	29,7
∆P Heating	kPa	2,1	2,9	3,8	6,5	8,6	11,4	6,0	8,2	11,0	8,2	11,0	14,5	14,1	18,1	23,4	10,4	14,1	18,4	14,6	19,7	25,8
Fan	W	20	30	40	45	50	60	60	80	95	65	80	95	65	85	125	120	145	180	135	170	190
Sound power Lw dBA	dB(A)	40	45	50	42	47	52	35	42	51	41	47	54	48	56	59	51	56	60	54	60	65
Sound pressure Lp dBA	dB(A)	31	36	41	33	38	43	26	33	42	32	38	45	39	47	50	42	47	51	45	51	56

MODEL		F	SC 1	4	FSC 24		FSC 34		FSC 44		FSC 54		F	SC 6	64	F	SC 7	′ 4				
Speed		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Air flow	m³/h	190	240	300	290	360	450	380	480	600	480	600	750	650	800	1000	750	950	1200	850	1100	1400
Cooling total emission	kW	1,30	1,50	1,80	2,00	2,40	2,80	2,70	3,30	3,90	3,20	3,90	4,60	4,20	4,80	5,70	4,60	5,50	6,60	5,20	6,30	7,50
Cooling sensible emission	kW	0,98	1,19	1,48	1,43	1,75	2,17	2,05	2,49	3,10	2,51	3,05	3,80	3,17	3,85	4,80	3,64	4,40	5,50	4,16	4,80	6,30
Heating	kW	1,60	1,95	2,30	2,50	3,00	3,50	3,20	4,00	4,80	4,00	4,80	5,80	5,20	6,20	7,40	6,00	7,30	8,80	6,70	8,30	10,10
∆P Cooling	kPa	7,0	9,8	13,1	13,1	18,0	24,7	8,7	12,4	17,0	7,4	10,0	13,6	11,8	15,6	20,7	8,0	11,0	15,0	10,1	14,4	19,6
∆P Heating	kPa	3,7	5,2	7,0	11,2	15,1	21,1	7,3	10,3	14,1	6,0	8,2	11,1	9,6	11,6	16,8	7,9	10,7	14,2	10,4	14,0	18,0
Fan	W	20	30	50	45	50	60	60	80	95	65	80	95	65	85	125	120	145	180	135	170	190
Sound power Lw dBA	dB(A)	40	45	51	43	50	54	40	45	51	43	47	54	44	50	58	49	55	60	54	60	65
Sound pressure Lp dBA	dB(A)	31	36	42	34	41	45	31	36	42	34	38	45	35	41	49	40	46	51	45	51	56

4 pipe units.

The following standard rating conditions are used:

COOLING

HEATING

Entering air temperature $+ 27^{\circ}C \text{ d.b.}, + 19^{\circ}C \text{ w.b.}$ Water temperature $+ 7/12^{\circ}C$

Entering air temperature + 20°C Water temperature + 70/60°C

MODEL		FS	C 13	8+1	FSC 23+1		FS	FSC 33+1		FS	C 43	3+1	FS	C 53	8+1	FS	C 63	3+1	FS	C 73	3+1	
Speed		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Air flow	m³/h	190	240	300	290	360	450	380	480	600	480	600	750	650	800	1000	750	950	1200	850	1100	1400
Cooling total emission	kW	1,10	1,30	1,50	1,80	2,15	2,50	2,47	2,90	3,50	2,90	3,44	4,00	3,60	4,15	4,80	4,30	5,08	5,95	4,47	5,37	6,31
Cooling sensible emission	kW	0,83	1,00	1,25	1,39	1,68	2,10	1,95	2,35	2,95	2,21	2,68	3,35	2,67	3,24	4,05	3,30	4,00	5,00	3,60	4,30	5,40
Heating	kW	1,25	1,35	1,75	2,05	2,35	2,70	2,65	3,10	3,60	2,93	3,31	3,69	3,90	4,50	5,30	4,20	5,00	5,50	4,60	5,40	6,10
∆P Cooling	kPa	3,2	4,3	5,7	7,9	10,6	14,1	6,0	8,3	11,1	10,0	13,5	17,9	14,2	18,2	23,5	13,0	17,2	22,7	13,7	18,6	24,4
∆P Heating	kPa	2,2	2,8	3,7	5,3	6,7	8,6	2,4	3,2	4,3	2,3	2,9	3,7	4,7	6,9	8,8	4,7	6,2	7,6	5,9	7,7	9,6
Fan	W	25	37	49	45	50	60	60	80	95	65	80	95	60	90	130	120	145	180	135	170	190
Sound power Lw dBA	dB(A)	40	45	51	42	50	54	35	42	51	45	48	54	48	54	59	49	55	60	55	62	66
Sound pressure Lp dBA	dB(A)	31	36	42	33	41	45	26	33	42	36	39	45	39	45	50	40	46	51	46	53	57

The sound pressure levels apply to the reverberant field of a 100 m³ room and a reverberation time of 0.5 sec.

Operation limits

Highest water inlet temperature	+ 85°C
Lowest water inlet temperature	+ 5°C
Highest working pressure	. 8 bar

Note: For MO model the maximum installation height is 2,8 m.
On heating it must be payed attention to rooms where the floor temperature is particularly low (for example less than 5°C).
In this situation the floor can cool the lower layer of air to a level that can stop the uniform diffusion of the hot air coming from the unit.

MODEL	FSC 13	FSC 23	FSC 33	FSC 43	FSC 53	FSC 63	FSC 73
Lowest	100	150	150	200	250	300	400
Highest	500	750	1000	1000	1500	2000	2000

Water flow limits for 3 row battery (I/h)

Water flow limits for 4 row battery (I/h)

MODEL	FSC 14	FSC 24	FSC 34	FSC 44	FSC 54	FSC 64	FSC 74
Lowest	100	150	200	250	300	400	450
Highest	750	1000	1000	1500	2000	2000	2250

Water flow limits for 1 row battery (I/h)

MODEL			FSC 33+1 FSC 34+1				
Lowest	60	80	100	130	160	180	200
Highest	250	350	450	500	650	700	750

Motor electrical data

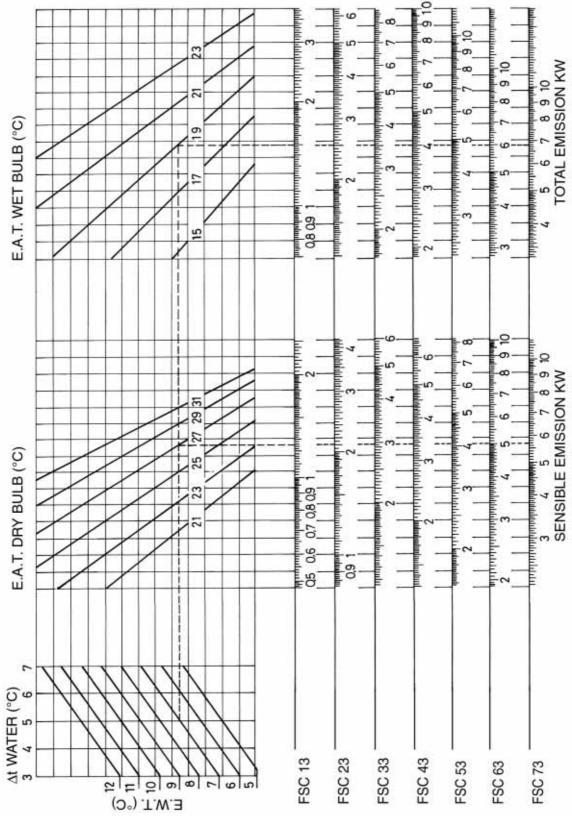
MODE	Ľ							FSC 73(+1) FSC 74(+1)
230/1	w	53	64	79	98	170	190	310
50Hz	Α	0,23	0,28	0,36	0,44	0,74	0,84	1,40

Emission (k) and air flow (Q) correction factors at high speed in accordance to the requested available pressure (Δp).

N	IODEL	FSC 1	FSC 2	FSC 3	FSC 4	FSC 5	FSC 6	FSC 7
∆P 10	Q=m³/h	270	400	530	680	900	1130	1300
Pa	(W) · k	0.95	0.94	0.94	0.95	0.96	0.96	0.97
∆P 20	Q=m³/h	230	340	450	580	800	1030	1180
Pa	(W) · k	0.87	0.86	0.85	0.88	0.91	0.91	0.92
∆P 30	Q=m³/h	170	280	390	500	700	950	1090
Pa	(W) . k	0.75	0.79	0.80	0.81	0.85	0.87	0.87

FSC Version

Cooling emission 3 row battery


E.A.T. °C: dry bulb + 27, wet bulb + 19

.		Air flow	EWI	5 - LW1	Г 10 С°	EWI	7 - LW1	「 12 C°	EWT	12 - LW	T 17 C°
	Speed		Water	Emis	ssion	Water	Emis	ssion	Water	Emis	ssion
MOD		m³/h m³/sec.	flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt
13	High	300 0,08	330	1900	1500	260	1500	1250	140	820	820
C	Medium	240 0,07	280	1620	1200	225	1300	1000	120	700	700
FS	Low	190 0,05	235	1370	990	190	1100	830	100	590	590
23	High	450 0,12	550	3200	2500	430	2500	2100	235	1360	1360
U U	Medium	360 0,10	470	2720	2000	370	2150	1680	200	1160	1160
FS	Low	290 0,08	400	2300	1650	310	1800	1390	170	980	980
33	High	600 0,17	780	4500	3550	605	3500	2950	330	1900	1900
U U	Medium	480 0,13	660	3830	2840	500	2900	2350	280	1620	1620
FS	Low	380 0,10	560	3240	2340	425	2470	1950	235	1370	1370
43	High	750 <mark>0,21</mark>	880	5100	4050	690	4000	3350	380	2200	2200
SC	Medium	600 0,17	750	4340	3240	595	3440	2680	325	1870	1870
	Low	480 0,13	635	3670	2670	500	2900	2210	275	1580	1580
53	High	1000 0,28	1060	6150	4900	830	4800	4050	450	2600	2600
SC	Medium	800 0,22	905	5230	3920	720	4150	3240	380	2210	2210
Ш	Low	650 <mark>0,18</mark>	765	4430	3230	620	3600	2670	325	1870	1870
63	High	1200 <mark>0,33</mark>	1330	7700	6000	1030	5950	5000	560	3250	3250
SC (Medium	950 <mark>0,26</mark>	1130	6550	4800	880	5080	4000	475	2760	2760
L K	Low	750 <mark>0,21</mark>	960	5540	3960	745	4300	3300	405	2340	2340
73	High	1400 0,39	1505	8700	6800	1160	6310	5700	640	3700	3700
SC .	Medium	1100 <mark>0,31</mark>	1280	7400	5440	985	5370	4560	545	3150	3150
Ľ.	Low	850 <mark>0,24</mark>	1080	6260	4490	820	4470	3760	460	2660	2660

Correction factors
for different entering
air temperatures

E.A.T. C °	K
28/20	1,14
26/18,5	0,93
25/18	0,84

Cooling emission graphs 3 row battery

Cooling output figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors: K = 0,85

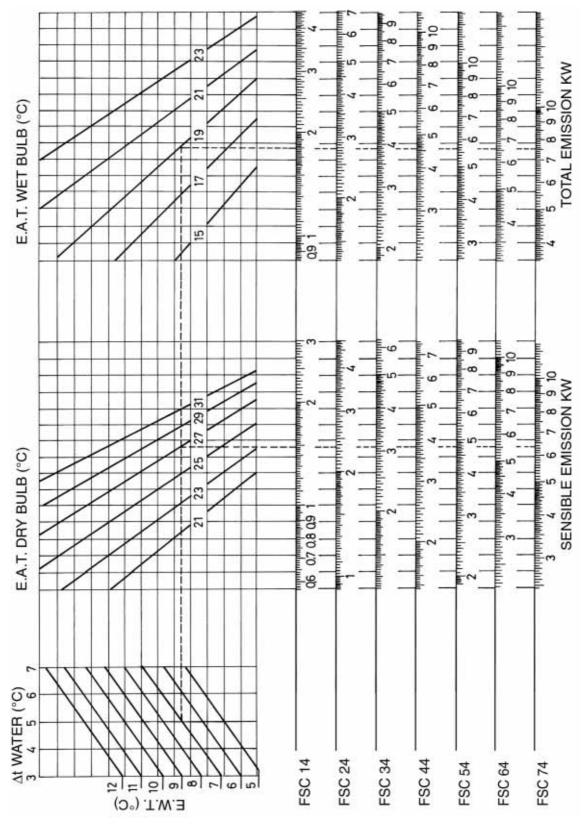
• Medium speed TOTAL • Low speed TOTAL

SENSIBLE K = 0,80K = 0,72SENSIBLE K = 0,66

ATTENTION:

A sensible heat figure higher than a total heat figure shows that the cooling is obtained without dehumidification, therefore the emission to refer to is the sensible one.

FSC Version


Cooling emission 4 row battery

E.A.T. °C: dry bulb + 27, wet bulb + 19

		Air flow	EW	Г 5 - LW ⁻	Т 10°С	EW	T 7 - LW	Г 12°С	EWI	「12 - LW	T 17°C
Ш	Speed		Water	Emission			Emis	ssion	Water	Emis	ssion
MOD		m³/h m³/sec.	flow I/h	Tot. Watt	Sen. Watt	Water flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt
14	High	300 0,08	400	2300	1780	310	1800	1480	170	980	980
- SC	Medium	240 0,07	335	1950	1430	260	1500	1190	145	830	830
L M	Low	190 0,05	285	1650	1180	225	1300	980	120	700	700
24	High	450 <mark>0,12</mark>	620	3600	2800	485	2800	2170	265	1540	1540
SC	Medium	360 <mark>0,10</mark>	530	3050	2250	415	2400	1750	225	1310	1310
ш	Low	290 <mark>0,08</mark>	450	2590	1850	345	2000	1430	190	1100	1100
34	High	600 <mark>0,17</mark>	865	5000	3700	675	3900	3100	360	2100	2100
SC	Medium	480 <mark>0,13</mark>	735	4250	2970	570	3300	2490	310	1780	1780
Ш.	Low	380 <mark>0,10</mark>	620	3600	2450	465	2700	2050	260	1500	1500
44	High	750 <mark>0,21</mark>	1000	5800	4500	795	4600	3800	430	2500	2500
SC	Medium	600 0,17	850	4930	3600	675	3900	3050	365	2120	2120
ш	Low	480 <mark>0,13</mark>	720	4170	2980	550	3200	2510	310	1800	1800
54	High	1000 0,28	1245	7200	5700	985	5700	4800	535	3100	3100
SC	Medium	800 0,22	1060	6120	4570	830	4800	3850	455	2630	2630
Ľ.	Low	650 <mark>0,18</mark>	895	5180	3770	725	4200	3170	380	2230	2230
64	High	1200 <mark>0,33</mark>	1450	8400	6600	1140	6600	5500	620	3600	3600
U	Medium	950 <mark>0,26</mark>	1235	7140	5300	950	5500	4400	530	3060	3060
FS	Low	750 <mark>0,21</mark>	1045	6050	4360	795	4600	3640	450	2590	2590
74	High	1400 <mark>0,39</mark>	1660	9600	7600	1295	7500	6300	710	4100	4100
SC	Medium	1100 <mark>0,31</mark>	1410	8160	6100	1090	6300	4800	600	3480	3480
Ľ.	Low	850 <mark>0,24</mark>	1195	6910	5030	900	5200	4160	510	2950	2950

E.A.T. C°	К
28/20	1,14
26/18,5	0,93
25/18	0,84

Cooling emission graphs 4 row battery

Cooling output figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors: SENSIBLE K = 0,80

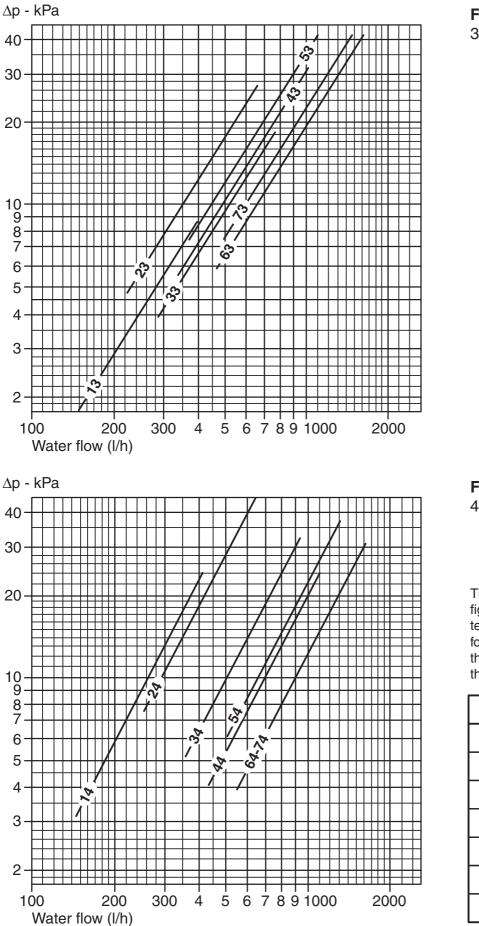
• Medium speed TOTAL • Low speed TOTAL K = 0,85

K = 0,72SENSIBLE K = 0,66

ATTENTION:

A sensible heat figure higher than a total heat figure shows that the cooling is obtained without dehumidification, therefore the emission to refer to is the sensible one.

FSC Version

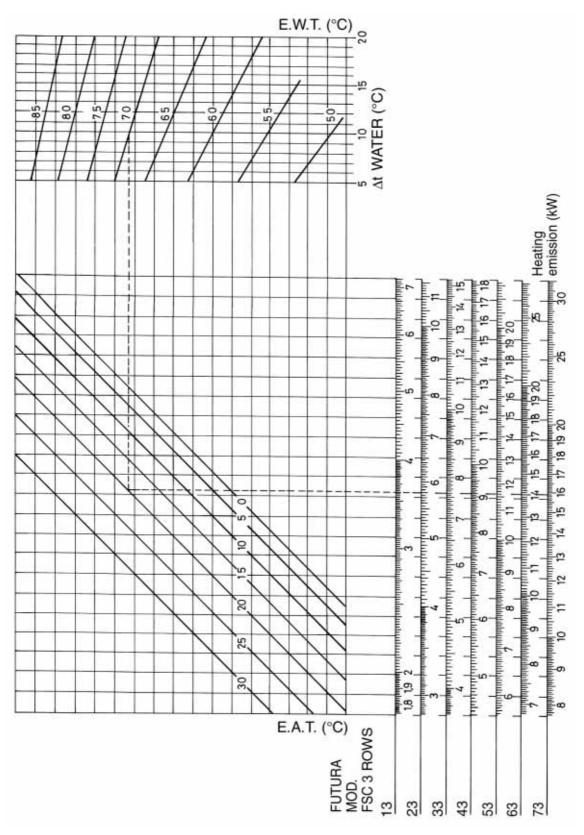

Heating emission E.A.T. °C: 20

		Air	3 row battery						4 I	row	batte	ery			
ZE	Speed	flow	EWT 50) - LWT 40°C	EWT 7	0 - LWT 60°C	EWT 8	5 - LWT 75°C		EWT 5	0 - LWT 40°C	EWT 7	0 - LWT 60°C	EWT 8	5 - LWT 75°C
SIZ		m³/h	Water flow	Emission	Water flow	Emission	Water flow	Emission		Water flow	Emission	Water flow	Emission	Water flow	Emission
		m ³ /sec.	l/h	Watt	l/h	Watt	l/h	Watt	J	l/h	Watt	l/h	Watt	l/h	Watt
	High	300 0,08	155	1800	310	3600	405	4700]	180	2050	345	4000	450	5200
1	Medium	240 0,07	130	1500	260	3000	335	3900		155	1800	295	3400	380	4400
	Low	190 0,05	110	1300	215	2500	285	3300		120	1400	240	2800	310	3600
	High	450 0,12	260	3000	500	5800	660	7600		270	3100	530	6100	690	8000
2	Medium	360 0,10	210	2400	405	4700	525	6100		235	2700	460	5300	595	6900
	Low	290 <mark>0,08</mark>	180	2100	345	4000	450	5200		200	2300	380	4400	490	5700
	High	600 <mark>0,17</mark>	345	4000	675	7800	890	10300		375	4350	725	8400	950	11000
3	Medium	480 <mark>0,13</mark>	285	3300	560	6500	735	8500		310	3600	605	7000	785	9100
	Low	380 <mark>0,10</mark>	235	2700	460	5300	595	6900		250	2900	485	5600	630	7300
	High	750 <mark>0,21</mark>	405	4700	785	9100	1040	12000		450	5200	875	10100	1150	13300
4	Medium	600 <mark>0,17</mark>	335	3900	655	7600	855	9900		370	4300	725	8400	940	10900
	Low	480 0,13	285	3300	555	6400	715	8300		310	3600	605	7000	785	9100
	High	1000 0,28	520	6000	1000	11600	1320	15300		570	6600	1115	12900	1460	16900
5	Medium	800 <mark>0,22</mark>	430	5000	830	9600	1080	12500		485	5600	940	10900	1230	14200
	Low	650 <mark>0,18</mark>	365	4200	710	8200	925	10700		405	4700	785	9100	1020	11800
	High	1200 <mark>0,33</mark>	620	7200	1210	14000	1590	18400		685	7900	1330	15400	1745	20200
6	Medium	950 <mark>0,26</mark>	520	6000	1010	11700	1315	15200		570	6600	1105	12800	1435	16600
	Low	750 <mark>0,21</mark>	430	5000	830	9600	1080	12500		470	5400	910	10500	1185	13700
	High	1400 0,39	710	8200	1375	15900	1800	20800		785	9050	1520	17600	1990	23000
7	Medium	1100 0,31	590	6800	1130	13100	1470	17000		650	7500	1255	14500	1635	18900
	Low	850 <mark>0,24</mark>	485	5600	940	10900	1225	14200		520	6000	1010	11700	1315	15200
												E	.A.T., C°		

Correction factors
for different entering
air temperatures

₩. Τ. C°	E.A.T., C °							
	22	18	16	14				
50/40	0,91	1,09	1,15	1,23				
70/60	0,95	1,05	1,09	1,13				
85/75	0,96	1,04	1,07	1,11				

Water pressure drop


FSC 3 ROWS

FSC 4 ROWS

The water pressure drop figures refer to a mean water temperature of 10°C; for different temperature, multiply the pressure drop figures by the correction factors K.

°C	К
20	0,94
30	0,90
40	0,86
50	0,82
60	0,78
70	0,74
80	0,70

Heating emission graphs 3 row battery

Heating emission figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors:

- Medium speed = 0,84
- Low speed = 0,70

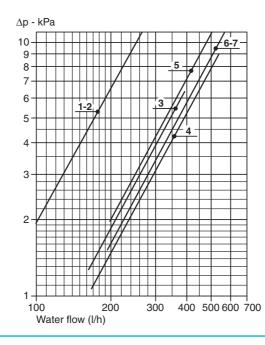
Heating emission graphs 4 row battery

Heating emission figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors:

- Medium speed = 0.84
- Low speed = 0,70

Heating emission 1 row battery (supplementary battery)

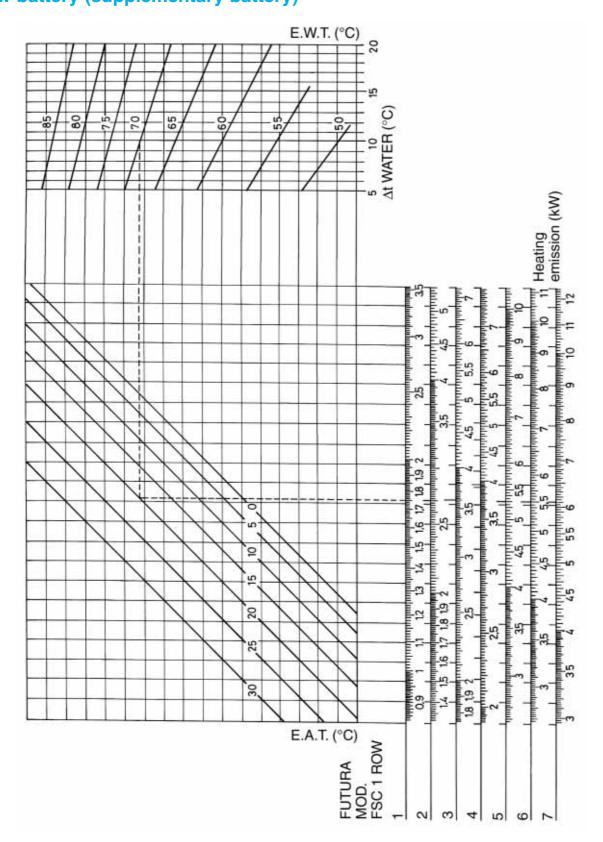

E.A.T. °C: 20

щ		Air flow	EWT 5	0 - LWT 40°C	EWT 7	0 - LWT 60°C	EWT 8	5 - LWT 75°C
SIZ	Speed	m³/h	Water	Emission	Water	Emission	Water	Emission
		m ³ /sec.	flow I/h	Watt	flow I/h	Watt	flow I/h	Watt
	High	300 0,08	80	900	150	1750	200	2300
1 [Medium	240 0,07	60	700	120	1350	155	1800
	Low	190 0,05	55	650	110	1250	140	1600
	High	450 0,12	120	1400	235	2700	305	3500
2	Medium	360 0,10	105	1200	205	2350	265	3060
	Low	290 0,08	90	1050	180	2050	230	2650
	High	600 0,17	160	1850	310	3600	405	4700
3	Medium	480 0,13	140	1600	270	3100	345	4000
	Low	380 0,10	120	1400	230	2650	300	3450
	High	750 0,21	175	2000	315	3690	445	5150
4	Medium	600 0,17	155	1800	285	3310	395	4550
	Low	480 0,13	140	1600	250	2930	350	4050
	High	1000 0,28	240	2750	460	5300	595	6900
5	Medium	800 0,22	205	2350	390	4500	505	5850
	Low	650 0,18	175	2000	340	3900	435	5050
	High	1200 0,33	245	2850	475	5500	625	7200
6	Medium	950 0,26	225	2600	435	5000	565	6500
	Low	750 0,21	190	2200	365	4200	470	5450
]	High	1400 0,39	275	3150	530	6100	690	8000
7	Medium	1100 0,31	240	2800	470	5400	605	7000
	Low	850 0,24	210	2400	400	4600	520	6000

Correction factors for different entering air temperatures

W.T.°C	E.A.T., °C							
	22	18	16	14				
50/40	0,91	1,09	1,15	1,23				
70/60	0,95	1,05	1,09	1,13				
85/75	0,96	1,04	1,07	1,11				

Water pressure drop 1 row battery



FSC

The water pressure drop figures refer to a mean water temperature of 65°C; for different temperatures, multiply the pressure drop figures by the correction factors K.

Tm °C	K
40	1,14
50	1,08
60	1,02
70	0,96
80	0,90

Heating emission graphs 1 row battery (supplementary battery)

Heating emission figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors:

- Medium speed = 0,84
- Low speed = 0,70

Construction

Outer casing

Made from strong synthetic lateral corners and from galvanized and prepainted frontal steel sheet. The plastic top grid has fixed louvres and is reversible in order to distribute the air in two different directions. **Standard colours:**

- lateral corners and top grid: Pantone 427C (light grey)
- frontal sheet: RAL 9003 (white)
- other colours on request.

Inner casing

Made from galvanized steel with closed cell insulation.

Filter

The filtration medium is a washable polypropylene net and the filter frame is made of galvanized steel. Special plastic sliding guides allow for easy insertion and removal of the filter.

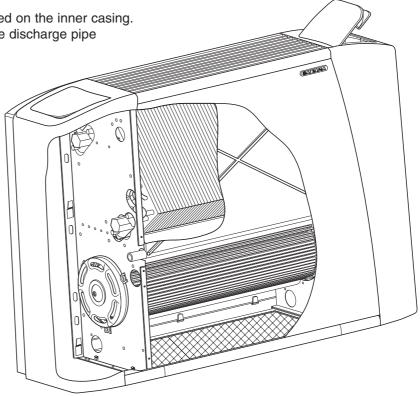
Fan assembly

The tangential fan assembly is composed of two fan shrouds: an external one with an evolving plastic section and an internal one of holed, shaped steel. The fan has an external diameter of 120mm and is the lenght of the battery. The fins are concave and are positioned in a spiral shape along the whole lenght of the fan.

Electric motor

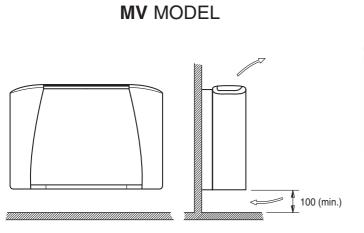
The motor is wired for single-phase with three speeds and thermal protection (klixon). The motor is secured on antivibration mountings and is fitted on the outside of the inner casing. Protection IP 21, class B.

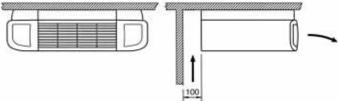
Heat exchanger

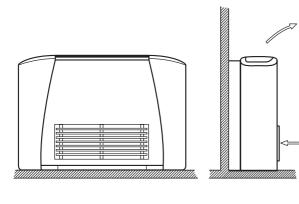

It is manufactured from drawn copper tube and the aluminium fins are mechanically bonded onto the tube by an expansion process. The coil has two 1/2 inch BSP internal connections and 1/8 inch BSP air vent and drain. Flow and return pipe connections are situated at the same end on the left side looking at the unit. On request we can deliver the unit with the connections on the right end side: this must be specified on the order as this operation can not be carried out on site during installation.

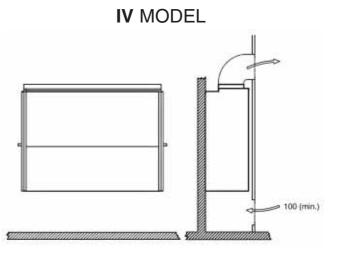
Condensate collection tray

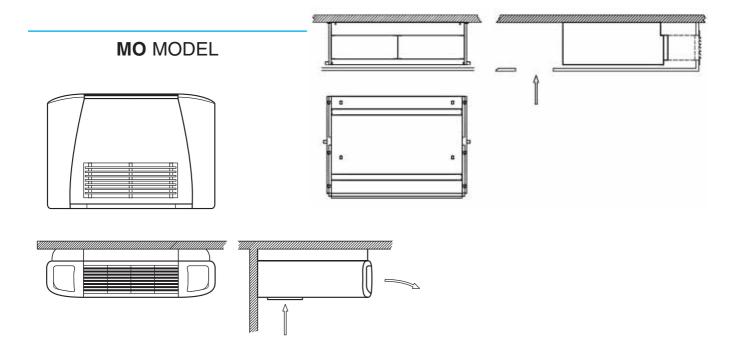
Made from plastic with an "L" shape fitted on the inner casing. The outside diameter of the condensate discharge pipe is 15mm.


Controls and Accessories

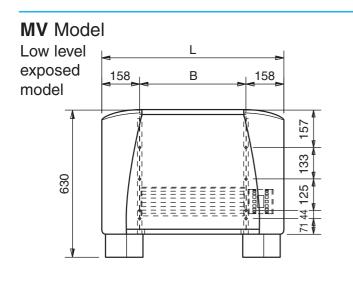

See pages 44 - 64.

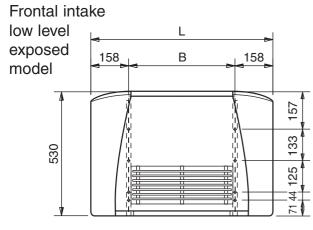

Model styles

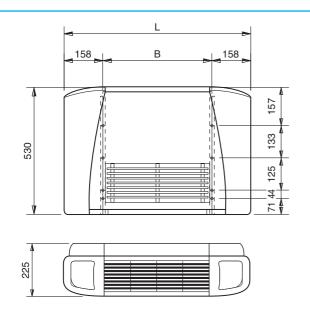


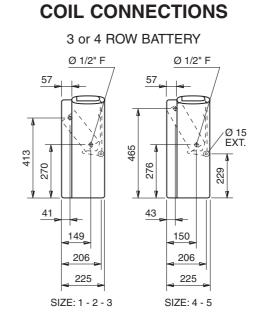

Note: to connect MV exposed model units to wall remote controls use the MV terminal adaptor kit Code 9060103.

MVB MODEL

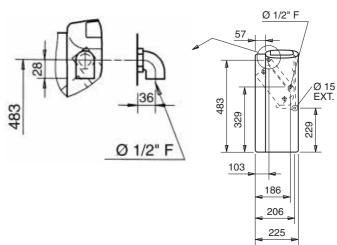


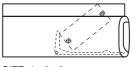



Dimensions, Weight, Water contents

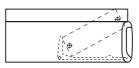


MVB Model



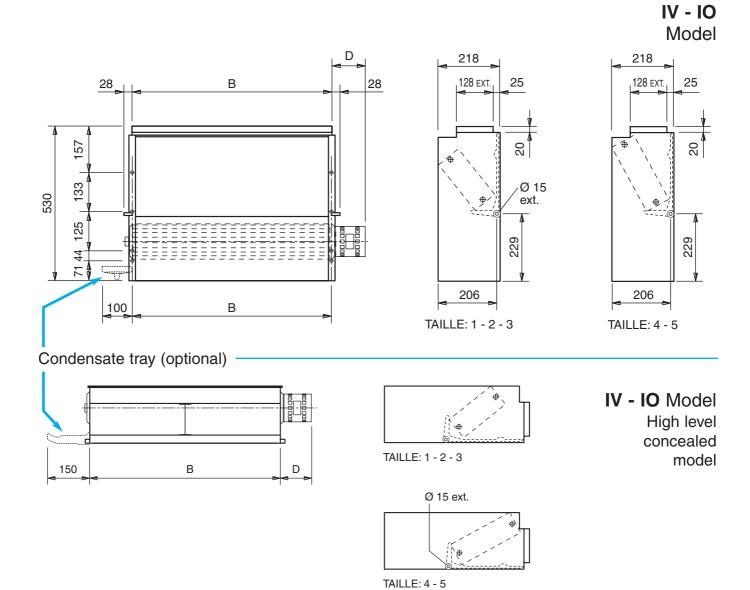


1 ROW SUPPLEMENTARY BATTERY



SIZE: 1 - 2 - 3 - 4 - 5

MO Model High level exposed model



SIZE: 4 - 5

FST Version

Futura SABIANA

MODEL	13	14	23	24	33	34	43	44	53	54
kg	15	17	20	23	23	26	24	27	29	33
۱*	0.6	0.8	0.9	1.3	1.3	1.7	1.6	2.2	1.7	2.4
В	454		669		884		884		1099	
L	770		985		1200		1200		1415	
D	8	5	85		9	5	95		88	

* Coil water contents (Litres)

EUROVENT Certification

Futura SABIANA

2 pipe units.

FST Version

The following standard rating conditions are used:

COOLING

Entering air temperature $+ 27^{\circ}C \text{ d.b.}, + 19^{\circ}C \text{ w.b.}$ Water temperature $+ 7/12^{\circ}C$

HEATING

Entering air temperature + 20°C Entering water temperature + 50°C water flow rate as for the cooling conditions

MODEL		F	ST 13	3	F	-ST 2	3	F	-ST 3	3	F	ST 4:	3	F	ST 5	3
Speed		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Air flow	m³/h	190	240	300	290	360	450	380	480	600	480	600	750	650	800	1000
Cooling total emission	kW	1,04	1,20	1,40	1,70	2,08	2,40	2,30	2,80	3,40	2,83	3,34	4,05	3,47	4,02	4,60
Cooling sensible emission	kW	0,78	0,92	1,17	1,31	1,62	2,02	1,89	2,30	2,87	1,91	2,29	2,99	2,57	3,14	3,88
Heating	kW	1,45	1,66	2,08	2,30	2,70	3,10	2,90	3,60	4,30	3,50	4,20	5,02	4,50	5,30	6,30
∆P Cooling	kPa	2,8	3,7	4,6	7,0	9,8	12,0	6,0	10,0	13,2	11,0	14,8	19,7	16,1	21,4	27,4
∆P Heating	kPa	2,1	2,9	3,7	6,2	8,0	9,8	6,2	8,4	11,0	9,2	12,4	16,4	15,6	20,5	26,1
Fan	W	27	30	40	37	45	50	42	50	65	50	58	80	57	70	85
Sound power Lw dBA	dB(A)	34	41	48	35	42	47	36	42	48	41	46	52	45	50	55
Sound pressure Lp dBA	dB(A)	25	32	39	26	33	38	27	33	39	32	37	43	36	41	46

MODEL		F	ST 14	4		-ST 24	4	F	=ST 34	4	F	- ST 44	4	F	-ST 54	4
Speed		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Air flow	m³/h	190	240	300	290	360	450	380	480	600	480	600	750	650	800	1000
Cooling total emission	kW	1,20	1,45	1,70	1,90	2,30	2,60	2,50	3,10	3,70	3,15	3,75	4,50	4,00	4,50	5,30
Cooling sensible emission	kW	0,90	1,15	1,40	1,34	1,66	1,99	1,69	2,08	2,62	2,34	2,77	3,52	3,02	3,61	4,46
Heating	kW	1,50	1,90	2,25	2,40	2,80	3,30	3,15	3,90	4,65	3,80	4,60	5,55	4,80	5,80	6,90
∆P Cooling	kPa	4,0	6,0	8,0	5,7	7,3	9,2	11,1	15,0	20,1	19,7	26,7	36,6	11,9	15,6	20,6
∆P Heating	kPa	3,9	5,4	7,2	4,7	6,0	7,6	10,8	14,8	20,8	17,8	24,4	33,4	10,0	13,2	17,4
Fan	W	27	30	40	37	45	50	42	50	65	50	58	80	57	70	85
Sound power Lw dBA	dB(A)	34	40	48	36	42	48	36	43	47	41	46	52	47	51	56
Sound pressure Lp dBA	dB(A)	25	31	39	27	33	39	27	34	38	32	37	43	38	42	47

4 pipe units.

The following standard rating conditions are used:

COOLING

Entering air temperature	+ 27°C d.b.,	+ 19°C w.b.
Water temperature	+ 7/12°C	

HEATING

Entering air temperature $+ 20^{\circ}$ C Water temperature $+ 70/60^{\circ}$ C

									p							
MODEL		F	ST 13-	+1	F	ST 23-	+1	F	ST 33-	+1	F	ST 43-	+1	F	ST 53-	+1
Speed		1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Air flow	m³/h	190	240	300	290	360	450	380	480	600	480	600	750	650	800	1000
Cooling total emission	kW	1,04	1,20	1,40	1,70	2,08	2,40	2,30	2,80	3,40	2,83	3,34	4,05	3,17	3,67	4,20
Cooling sensible emission	kW	0,78	0,92	1,17	1,10	1,36	1,70	1,70	2,07	2,59	1,91	2,29	2,99	2,28	2,79	3,45
Heating	kW	1,05	1,18	1,44	1,95	2,25	2,60	2,45	3,00	3,50	3,00	3,40	3,95	3,28	3,80	4,40
∆P Cooling	kPa	3,4	4,6	5,7	8,5	11,8	14,5	7,7	10,5	13,9	11,0	14,8	19,7	12,4	16,1	20,6
∆P Heating	kPa	1,4	1,8	2,4	5,4	6,9	8,9	2,1	2,9	3,7	2,7	3,5	4,4	3,3	4,3	5,4
Fan	W	27	30	40	37	45	50	42	50	65	50	58	80	57	70	85
Sound power Lw dBA	dB(A)	34	41	48	36	42	47	39	43	48	43	48	54	44	48	54
Sound pressure Lp dBA	dB(A)	25	32	39	27	33	38	30	34	39	34	39	45	35	39	45

The sound pressure levels apply to the reverberant field of a 100 m³ room and a reverberation time of 0.5 sec.

FST Version

Operation limits

Highest water inlet temperature	+ 85°C
Lowest water inlet temperature	+ 5°C
Highest working pressure	8 bar

Note: For MO model the maximum installation height is 2,8 m.
On heating it must be payed attention to rooms where the floor temperature is particularly low (for example less than 5°C).
In this situation the floor can cool the lower layer of air to a level that can stop the uniform diffusion of the hot air coming from the unit.

Water flow limits for 3 row battery (I/h)

MODEL	FST 13	FST 23	FST 33	FST 43	FST 53
Lowest	100	150	150	200	250
Highest	500	750	1000	1000	1500

Water flow limits for 4 row battery (I/h)

MODEL	FST 14	FST 24	FST 34	FST 44	FST 54
Lowest	100	150	200	250	300
Highest	750	1000	1000	1500	2000

Water flow limits for 1 row battery (I/h)

MODEL	FST 13+1 FST 14+1	FST 23+1 FST 24+1	FST 33+1 FST 34+1	FST 43+1 FST 44+1	FST 53+1 FST 54+1
Lowest	60	80	100	130	160
Highest	250	350	450	500	650

Motor electrical data

MODE	Ľ	FST 13 (+1) FST 14 (+1)	FST 23 (+1) FST 24 (+1)	FST 33 (+1) FST 34 (+1)	FST 43 (+1) FST 44 (+1)	FST 53 (+1) FST 54 (+1)
230/1	w	38	40	60	70	85
50Hz	Α	0,15	0,16	0,20	0,27	0,35
50HZ	μF	1	1,5	1,25	2	1,5

Emission (k) and air flow (Q) correction factors at high speed in accordance to the requested available pressure (Δp).

	SIZE	FST 1	FST 2	FST 3	FST 4	FST 5
∆P 05	Q=m³/h	270	410	560	700	950
Pa	(W) · k	0.95	0.94	0.94	0.95	0.96
∆P 10	Q=m³/h	250	370	520	650	900
Pa	(W) · k	0.87	0.85	0.88	0.87	0.87
∆P 15	Q=m³/h	220	340	470	600	800
Pa	(W) . k	0.80	0.83	0.82	0.81	0.83

FST Version

Cooling emission 3 row battery

E.A.T. °C: dry bulb + 27, wet bulb + 19

		Air flow	EW	T 5 - LW ⁻	T 10°C	EW.	T 7 - LW ⁻	T 12°C	EWT	⁻ 12 - LW	T 17°C
Ш	Speed		Water	Emis	ssion	Water	Emis	ssion	Water	Emis	ssion
MOD		m³/h m³/sec.	flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt
с С	High	300 0,08	320	1870	1400	240	1400	1170	130	760	760
FST 1	Medium	240 0,07	260	1520	1130	210	1200	920	110	650	650
	Low	190 0,05	230	1320	950	180	1040	780	100	570	570
e	High	450 0,12	545	3150	2300	415	2400	2020	225	1310	1310
ST 2	Medium	360 <mark>0,10</mark>	455	2630	1930	360	2080	1620	195	1130	1130
	Low	290 <mark>0,08</mark>	390	2270	1540	295	1700	1310	160	930	930
33	High	600 0,17	770	4450	3450	590	3400	2870	320	1850	1850
ST	Medium	480 <mark>0,13</mark>	610	3540	2620	485	2800	2300	265	1530	1530
	Low	380 <mark>0,10</mark>	550	3200	2200	400	2300	1890	215	1250	1250
က္	High	750 <mark>0,21</mark>	915	5300	4080	700	4050	2990	380	2210	2210
ST 4	Medium	600 0,17	740	4500	3160	580	3340	2290	315	1820	1820
	Low	480 0,13	650	3800	2600	490	2830	1910	265	1540	1540
53	High	1000 0,28	1055	6100	4670	795	4600	3880	435	2510	2510
ST	Medium	800 0,22	880	5090	3820	695	4020	3140	380	2190	2190
	Low	650 0,18	760	4390	3200	600	3470	2570	325	1890	1890

E.A.T. C °	К
28/20	1,14
26/18,5	0,93
25/18	0,84

Correction factors for different entering air temperatures

₹

Cooling emission graphs 3 row battery

0 Ð 23 10 ic TOTAL EMISSION 2 E.A.T. WET BULB (°C) 5 c 5 e 8 I 80 N 5 0.7 00 10 SENSIBLE EMISSION KW è ŝ 29 5 4 E.A.T. DRY BULB (°C) 8 60 m 23 0,8 5 0.7 8 1 0,8 09 0.5 1 5 At WATER (°C) 3 4 5 6 **FST 13 FST 43 FST 23 FST 33** 53 FST 입 티 인 0 0 -9 ŝ (O°).T.W.A Cooling output figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors: K = 0,80

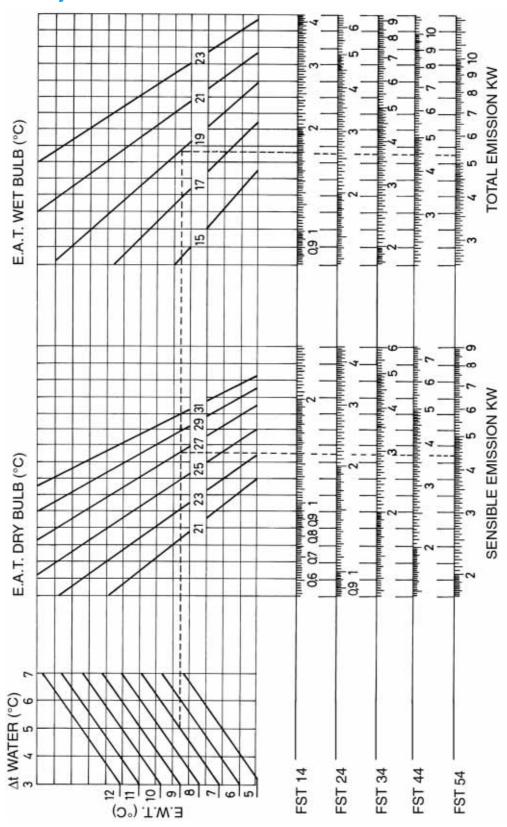
• Medium speed TOTAL K = 0,85 Low speed TOTAL K = 0,72

SENSIBLE SENSIBLE K = 0,66

ATTENTION:

A sensible heat figure higher than a total heat figure shows that the cooling is obtained without dehumidification, therefore the emission to refer to is the sensible one.

FST Version


Cooling emission 4 row battery

E.A.T. °C: dry bulb + 27, wet bulb + 19

<u>ب</u> ـ		Air flow	EW	Г 5 - LW ⁻	T 10°C	EW.	T 7 - LW ⁻	T 12°C	EWT 12 - LWT 17°C			
Ш	Speed	_	Water	Emis	ssion	Water	Emis	ssion	Water	Emi	ssion	
MOD		m³/h m³/sec.	flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt	
4	High	300 0,08	375	2180	1660	295	1700	1400	160	940	940	
ST 1	Medium	240 0,07	315	1830	1340	250	1450	1150	135	790	790	
ľ.	Low	190 0,05	260	1520	1090	210	1200	900	110	650	650	
4	High	450 0,12	580	3350	2550	450	2600	1990	250	1450	1450	
FST 2	Medium	360 <mark>0,10</mark>	500	2910	2150	400	2300	1660	215	1250	1250	
	Low	290 0,08	415	2400	1710	330	1900	1340	180	1040	1040	
34	High	600 0,17	815	4720	3520	640	3700	2620	355	2050	2050	
ST	Medium	480 0,13	680	3920	2750	535	3100	2080	290	1690	1690	
	Low	380 0,10	545	3160	2160	430	2500	1690	235	1360	1360	
4	High	750 0,21	1000	5790	4450	780	4500	3520	430	2500	2500	
ST 4	Medium	600 0,17	820	4740	3460	650	3750	2770	350	2040	2040	
	Low	480 0,13	690	3980	2840	545	3150	2340	300	1720	1720	
54	High	1000 0,28	1175	6800	5300	915	5300	4460	505	2930	2930	
ST	Medium	800 0,22	985	5690	4250	780	4500	3610	425	2450	2450	
	Low	650 0,18	875	5060	3680	690	4000	3020	375	2180	2180	

E.A.T. C °	К
28/20	1,14
26/18,5	0,93
25/18	0,84

Cooling emission graphs 4 row battery

Cooling output figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors: SENSIBLE K = 0,80

SENSIBLE

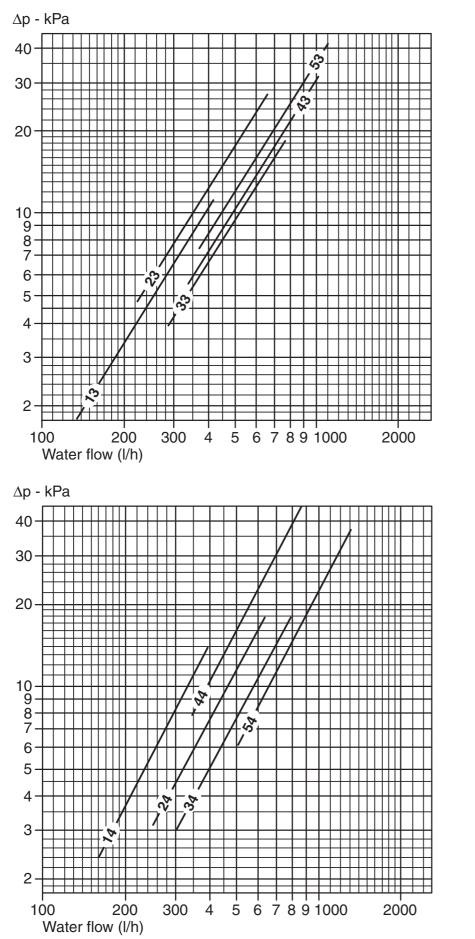
• Medium speed TOTAL K = 0,85 Low speed TOTAL K = 0,72

ATTENTION:

A sensible heat figure higher than a total heat figure shows that the cooling is obtained without dehumidification, therefore the emission to refer to is the sensible one.

K = 0,66

FST Version

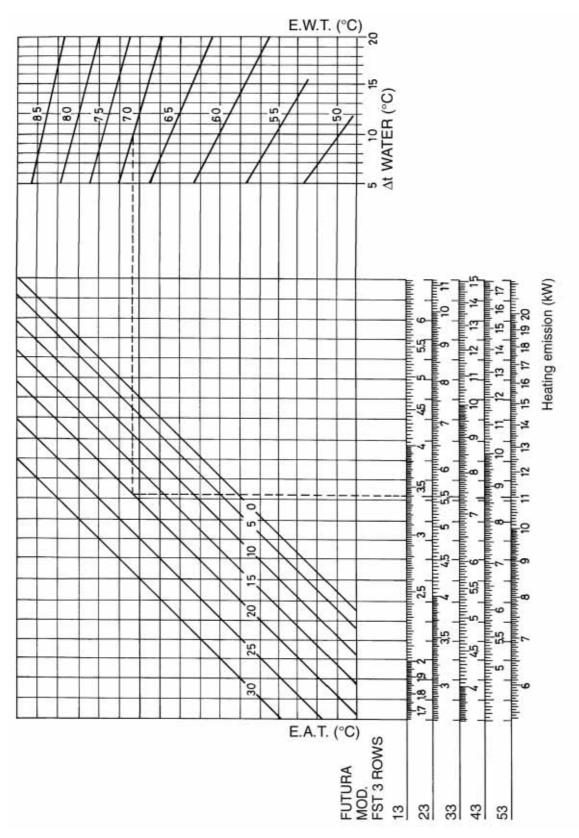

Heating emission E.A.T. °C: 20

		Air		3	row	batte	ery				4	row	batte	ery	
SIZE	Speed	flow	EWT 50) - LWT 40°C	EWT 70) - LWT 60°C	EWT 8	5 - LWT 75°C		EWT 50) - LWT 40°C	EWT 7) - LWT 60°C	EWT 8	5 - LWT 75°C
S	Opecu	m³/h m³/sec.	Water flow I/h	Emission Watt	Water flow I/h	Emission Watt	Water flow I/h	Emission Watt		Water flow I/h	Emission Watt	Water flow I/h	Emission Watt	Water flow I/h	Emission Watt
	High	300 <mark>0,08</mark>	155	1770	295	3400	385	4470]	170	1980	330	3800	435	5050
1	Medium	240 0,07	120	1400	245	2850	320	3700		145	1700	280	3250	365	4200
	Low	190 <mark>0,05</mark>	110	1250	210	2400	270	3100		115	1350	230	2650	295	3400
	High	450 <mark>0,12</mark>	250	2880	475	5500	625	7250		260	3000	500	5800	660	7650
2	Medium	360 <mark>0,10</mark>	200	2300	390	4500	500	5800		225	2600	435	5050	570	6600
	Low	290 <mark>0,08</mark>	175	2000	330	3800	430	4950		190	2200	365	4200	465	5400
	High	600 <mark>0,17</mark>	335	3880	640	7400	845	9750		360	4130	690	8000	935	10800
3	Medium	480 <mark>0,13</mark>	270	3150	535	6200	700	8100		295	3400	575	6650	780	9000
	Low	380 <mark>0,10</mark>	225	2600	435	5050	565	6550		240	2750	460	5300	605	7000
	High	750 <mark>0,21</mark>	395	4550	745	8650	985	11400		430	5000	830	9600	1090	12600
4	Medium	600 <mark>0,17</mark>	320	3700	625	7200	810	9400		355	4100	690	8000	910	10500
	Low	480 <mark>0,13</mark>	270	3150	525	6100	680	7900		295	3400	575	6650	780	9000
	High	1000 0,28	495	5750	950	11000	1255	14500		550	6400	1060	12250	1425	16500
5	Medium	800 0,22	410	4750	785	9100	1030	11900		460	5300	895	10350	1210	14000
	Low	650 <mark>0,18</mark>	345	4000	675	7800	880	10200		385	4450	745	8650	995	11500

Correction factors for different entering air temperatures

W.T. C∘	E.A.T., C °									
W.1. C	22	18	16	14						
50/40	0,91	1,09	1,15	1,23						
70/60	0,95	1,05	1,09	1,13						
85/75	0,96	1,04	1,07	1,11						

Water pressure drop

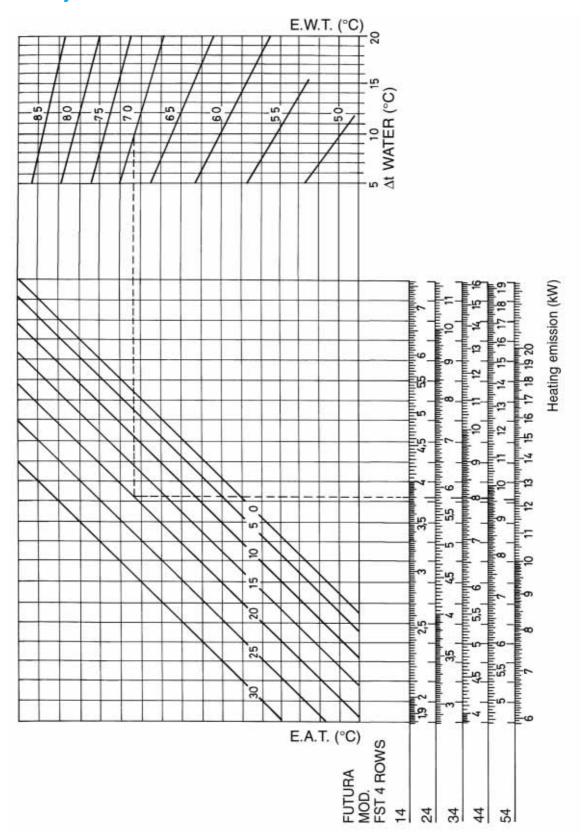

FST 3 ROWS

FST 4 ROWS

The water pressure drop figures refer to a mean water temperature of 10°C; for different temperature, multiply the pressure drop figures by the correction factors K.

°C	К
20	0,94
30	0,90
40	0,86
50	0,82
60	0,78
70	0,74
80	0,70

Heating emission graphs 3 row battery



Heating emission figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors:

- Medium speed = 0,84
- Low speed = 0,70

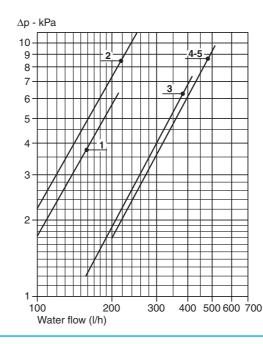
Heating emission graphs 4 row battery

Heating emission figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors:

- Medium speed = 0,84
- Low speed = 0,70

Heating emission 1 row battery (supplementary battery)

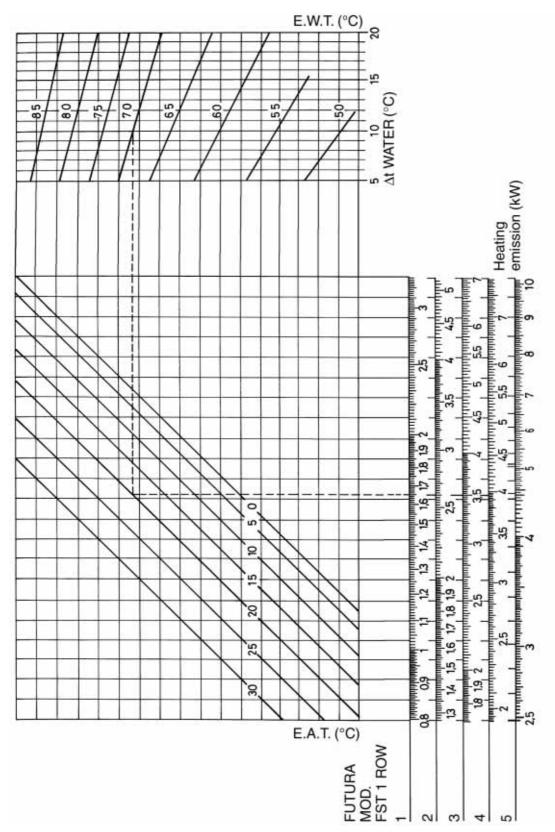

E.A.T. °C: 20

ш		Air flow	EWT 50) - LWT 40°C	EWT 70) - LWT 60°C	EWT 8	5 - LWT 75°C
SIZE	Speed	m³/h m³/sec.	Water flow I/h	Emission Watt	Water flow I/h	Emission Watt	Water flow I/h	Emission Watt
	High	300 0,08	75	860	145	1440	190	2200
1	Medium	240 0,07	60	680	120	1180	150	1750
	Low	190 0,05	55	630	105	1050	135	1550
	High	450 0,12	120	1360	225	2600	300	3450
2	Medium	360 0,10	100	1160	195	2250	260	2970
	Low	290 0,08	90	1020	170	1950	225	2580
	High	600 0,17	155	1820	300	3500	400	4650
3	Medium	480 0,13	135	1550	260	3000	340	3900
	Low	380 0,10	120	1360	210	2450	290	3360
	High	750 <mark>0,21</mark>	180	2060	340	3950	455	5250
4	Medium	600 0,17	150	1750	295	3400	390	4500
	Low	480 0,13	135	1550	260	3000	340	3940
	High	1000 0,28	230	2570	380	4400	585	6750
5	Medium	800 0,22	200	2280	330	3800	490	5700
	Low	650 0,18	170	1940	280	3280	425	4900

Correction factors for different entering air temperatures

WT OC	E.A.T., °C								
W.T. °C	22	18	16	14					
50/40	0,91	1,09	1,15	1,23					
70/60	0,95	1,05	1,09	1,13					
85/75	0,96	1,04	1,07	1,11					

Water pressure drop 1 row battery


FST

The water pressure drop figures refer to a mean water temperature of 65°C; for different temperatures, multiply the pressure drop figures by the correction factors K.

Tm °C	K
40	1,14
50	1,08
60	1,02
70	0,96
80	0,90

Heating emission graphs

1 row battery (supplementary battery)

Heating emission figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors:

- Medium speed = 0.84
- Low speed = 0,70

Fan coil with tangential fan

Easy use

Attention to details

Depht: 183 mm only

Construction

Outer casing

Made from strong synthetic lateral corners and from galvanized and prepainted frontal steel sheet. The plastic top grid has fixed louvres and is reversible in order to distribute the air in two different directions.

The plastic top grid has fixed louvres and is reversible in order to distribute the air in two different direction **Standard colours:**

- lateral corners and top grid: Pantone 427C (light grey)
- frontal sheet: RAL 9003 (white)
- other colours on request.

Inner casing

Made from galvanized steel with closed cell insulation.

Filter

The filtration medium is a washable polypropylene net and the filter frame is made of galvanized steel. Special plastic sliding guides allow for easy insertion and removal of the filter.

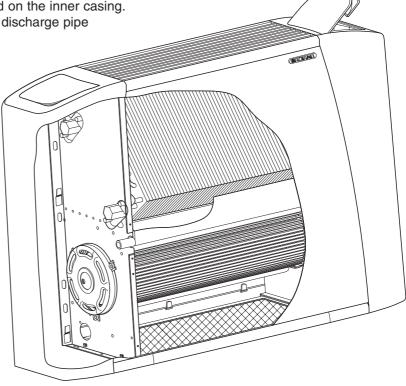
Fan assembly

The tangential fan assembly is composed of two fan shrouds: an external one with an evolving plastic section and an internal one of holed, shaped steel. The fan has an external diameter of 120mm and is the lenght of the battery. The fins are concave and are positioned in a spiral shape along the whole lenght of the fan.

Electric motor

The motor is wired for single-phase with three speeds and thermal protection (klixon). The motor is secured on antivibration mountings and is fitted on the outside of the inner casing. Protection IP 21, class B.

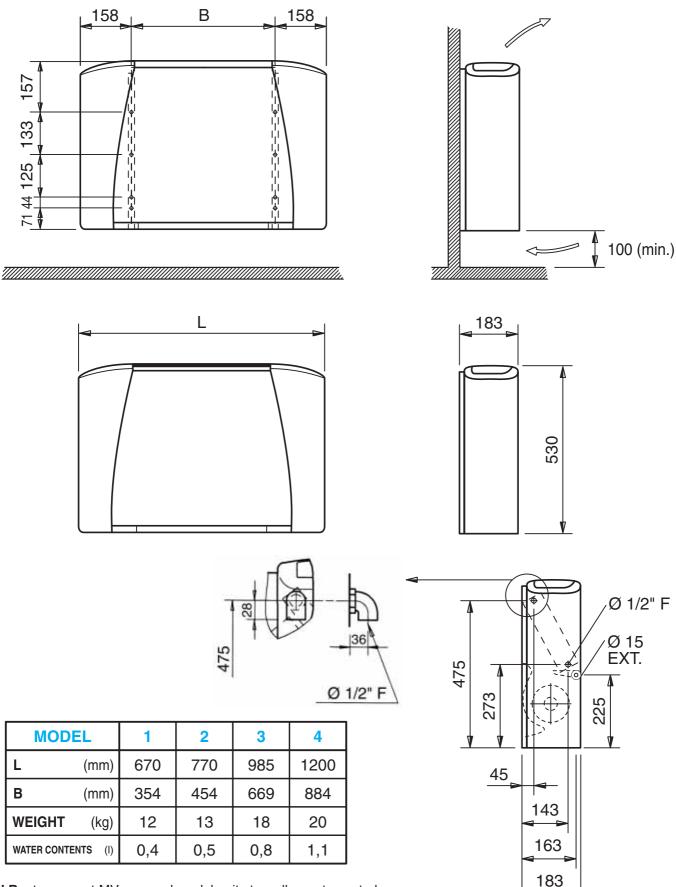
Heat exchanger


It is manufactured from drawn copper tube and the aluminium fins are mechanically bonded onto the tube by an expansion process. The coil has two 1/2 inch BSP internal connections and 1/8 inch BSP air vent and drain. Flow and return pipe connections are situated at the same end on the left side looking at the unit. On request we can deliver the unit with the connections on the right end side: this must be specified on the order as this operation can not be carried out on site during installation.

Condensate collection tray

Made from plastic with an "L" shape fitted on the inner casing. The outside diameter of the condensate discharge pipe is 15mm.

Controls and Accessories


See pages 44 - 64.

FSR Home Version

MV Model Dimensions, Weight, Water contents

N.B.: to connect MV exposed model units to wall remote controls use the MV terminal adaptor kit Code 9060103.

FSR Version

The following standard rating conditions are used:

COOLING

Entering air temperature $+ 27^{\circ}C \text{ d.b.}, + 19^{\circ}C \text{ w.b.}$ Water temperature $+ 7/12^{\circ}C$

HEATING

Entering air temperature + 20°C Entering water temperature + 50°C water flow rate as for the cooling conditions

MODEL			FSR 1			FSR 2			FSR 3			FSR 4	
Speed		1	2	3	1	2	3	1	2	3	1	2	3
Air flow m ²	³/h	110	150	180	160	200	250	230	290	360	320	400	500
Cooling total emission k	N	0,63	0,78	0,87	0,95	1,10	1,30	1,31	1,59	1,87	2,00	2,40	2,80
Cooling sensible emission k	N	0,50	0,60	0,70	0,71	0,86	1,01	1,08	1,31	1,53	1,40	1,71	2,05
Heating k	N	0,80	1,00	1,20	1,13	1,32	1,60	1,80	2,20	2,60	2,50	3,00	3,60
∆P Cooling kF	Pa	6,0	9,0	11,0	11,5	15,5	20,0	4,4	6,3	7,8	11,0	14,5	20,0
∆P Heating kF	Pa	4,0	5,5	7,0	9,5	12,5	16,5	4,0	5,0	7,0	10,5	14,1	18,8
Fan V	V	20	22	28	20	22	27	22	26	31	25	30	36
Sound power Lw dBA dB	(A)	31	35	42	33	38	43	34	39	45	34	40	46
Sound pressure Lp dBA dB	(A)	22	26	33	24	29	34	25	30	36	25	31	37

The sound pressure levels apply to the reverberant field of a 100 m³ room and a reverberation time of 0.5 sec.

Operation limits

Highest water inlet temperature	+ 85°C
Lowest water inlet temperature	+ 5°C
Highest working pressure	. 8 bar

Water flow limits (l/h)

MODEL	FSR 1	FSR 2	FSR 3	FSR 4
Lowest	70	100	100	150
Highest	350	550	700	700

Motor electrical data

MODE	Ľ	FSR 1	FSR 2	FSR 3	FSR 4
230/1	w	25	30	35	40
50Hz	Α	0,11	0,13	0,16	0,20
30112	μ F	0,8	0,8	1,25	1,5

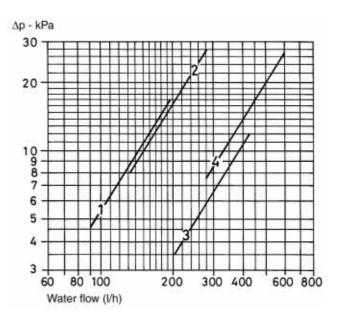
Cooling emission E.A.T. °C: dry bulb + 27, wet bulb + 19

		Air flow	EW	T 5 -LW	Г 10°С	EW	T 7 -LW1	Г 12°С	EW	Г 12 -LW	T 17°C
DE	Speed		Water	Emis	ssion	Water	Emis	ssion	Water	Emis	ssion
MOD		m³/h m³/sec.	flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt	flow I/h	Tot. Watt	Sen. Watt
	High	180 0,053	180	1060	800	150	880	700	85	500	500
1	Medium	150 0,042	160	930	700	135	780	600	75	430	430
	Low	110 0,030	130	750	530	110	630	500	60	340	340
	High	250 <mark>0,069</mark>	275	1600	1170	225	1300	1010	125	730	730
2	Medium	200 0,055	240	1400	950	190	1100	860	110	620	620
	Low	160 <mark>0,044</mark>	190	1100	800	165	950	710	90	520	520
	High	360 <mark>0,100</mark>	425	2450	1800	345	1900	1530	195	1120	1120
3	Medium	290 <mark>0,081</mark>	360	2100	1400	295	1600	1310	165	950	950
	Low	230 0,064	300	1750	1200	240	1300	1080	135	780	780
	High	500 0,139	595	3450	2550	485	2800	2190	275	1600	1600
4	Medium	400 <mark>0,111</mark>	510	2950	2000	415	2400	1830	225	1300	1300
	Low	320 0,089	355	2050	1700	345	2000	1500	190	1100	1100

Water pressure drop

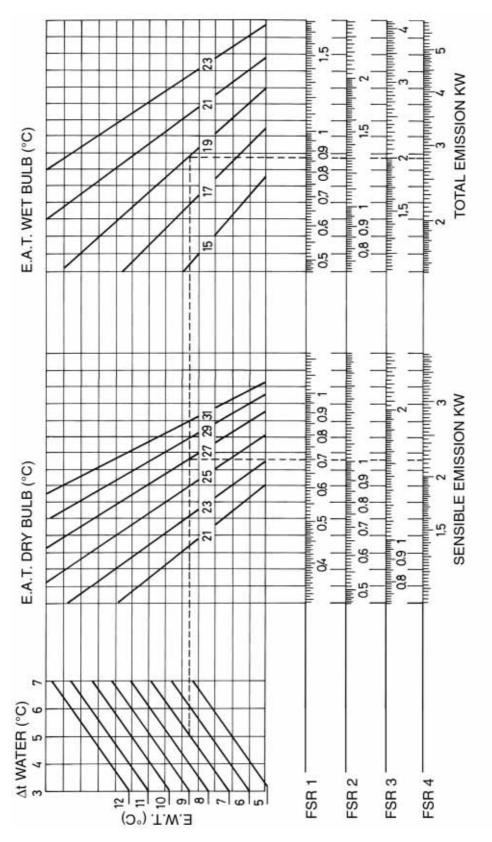
°C	К
20	0,94
30	0,90
40	0,86
50	0,82
60	0,78
70	0,74
80	0,70

The water pressure drop figures refer to a mean water temperature of 10°C; for different temperature, multiply the pressure drop figures by the correction factors K.


Κ

1,14

0,93


0,84

E.A.T. C°28/20Correction factors
for different entering
air temperatures25/18

Futura SABIANA

Cooling emission graphs

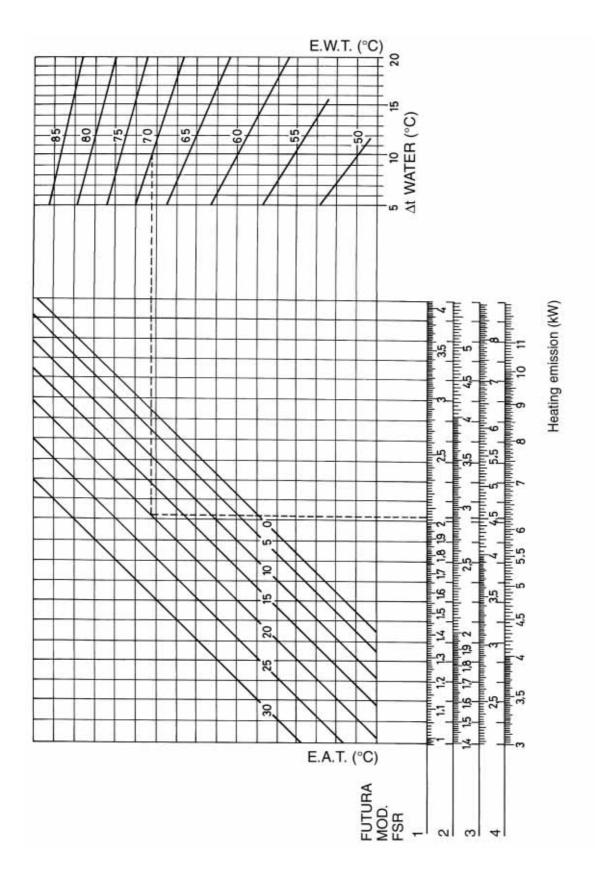
Cooling output figures refer to high speed

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors:

Medium speed TOTAL K = 0,85 SENSIBLE K = 0,80
 Low speed TOTAL K = 0,72 SENSIBLE K = 0,66

ATTENTION:

A sensible heat figure higher than a total heat figure shows that the cooling is obtained without dehumidification, therefore the emission to refer to is the sensible one.

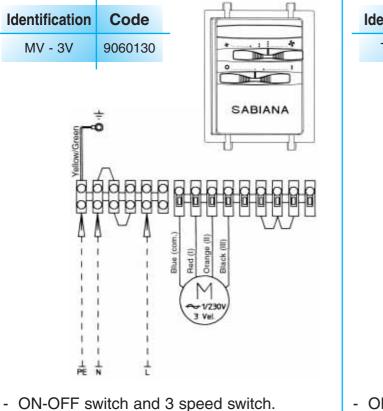

Heating emission E.A.T. °C: 20

MODEL		Air flow	E.W.1	. 50 - L.W.T. 40°C	E.W.T.	70 - L.W.T. 60°C	E.W.T. 8	85 - L.W.T. 75°C
D	Speed	m³/h	Water	Emission	Water	Emission	Water	Emission
Σ		m ³ /sec.	flow l/h	Watt	flow I/h	Watt	flow I/h	Watt
	High	180 0,053	90	1060	175	2040	235	2730
1	Medium	150 <mark>0,042</mark>	80	920	155	1770	205	2360
	Low	110 0,030	60	720	120	1370	160	1830
	High	250 0,069	130	1510	250	2900	335	3860
2	Medium	200 0,055	110	1270	210	2450	275	3180
	Low	160 0,044	90	1070	175	2000	225	2600
	High	360 0,100	205	2360	390	4510	520	6000
3	Medium	290 0,081	170	1990	325	3770	435	5010
	Low	230 0,064	140	1640	265	3080	355	4090
	High	500 0,139	280	3230	535	6210	715	8300
4	Medium	400 0,111	230	2640	445	5160	595	6890
	Low	320 0,089	190	2190	370	4260	490	5690

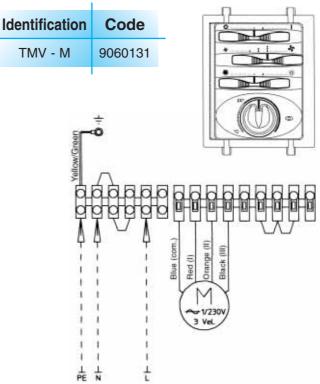
W.T. C°	E.A.T., C °							
W.1. C*	22	18	16	14				
50/40	0,91	1,09	1,15	1,23				
70/60	0,95	1,05	1,09	1,13				
85/75	0,96	1,04	1,07	1,11				

Correction factors for different entering air temperatures

Heating emission graphs

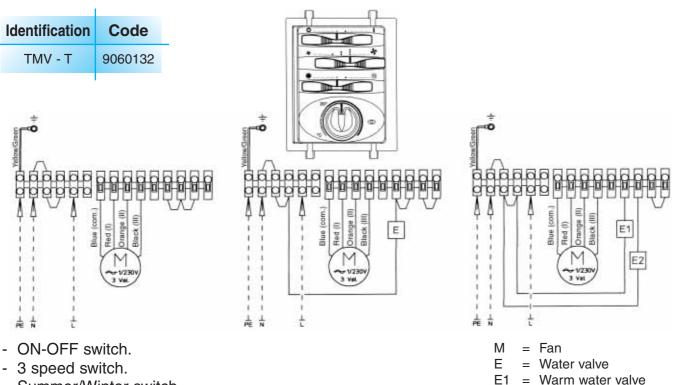


Heating emission figures refer to high speed

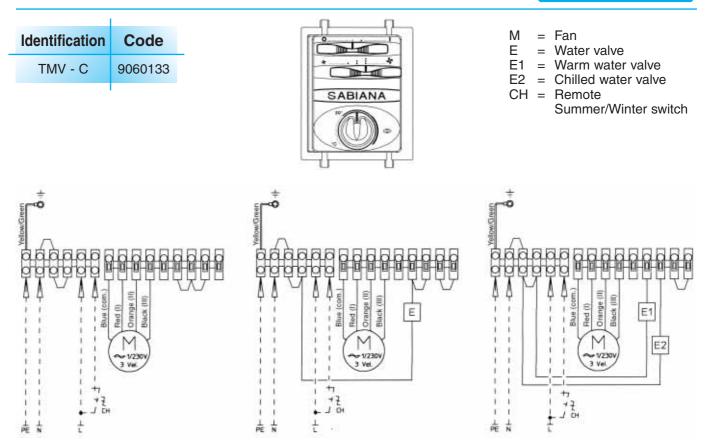

Medium and low speed figures are obtained multiplying high speed figures by the following correction factors:

- Medium speed = 0,84
- Low speed = 0,70

Electronic controls to be fitted on the unit for FSC, FST, FSR Futura SABIANA


- Without thermostatic control.

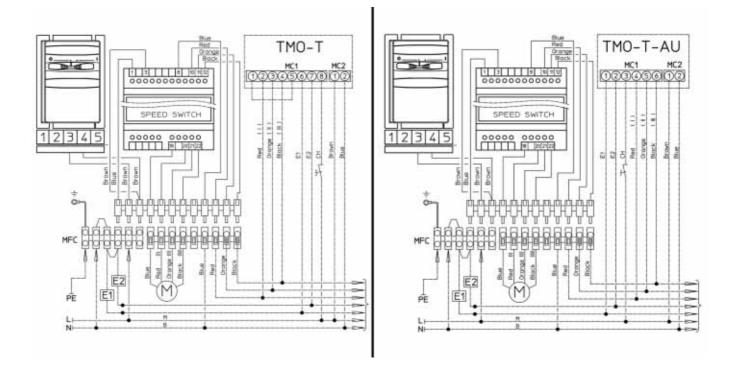
- ON-OFF switch and 3 speed switch.


E2 = Chilled water valve

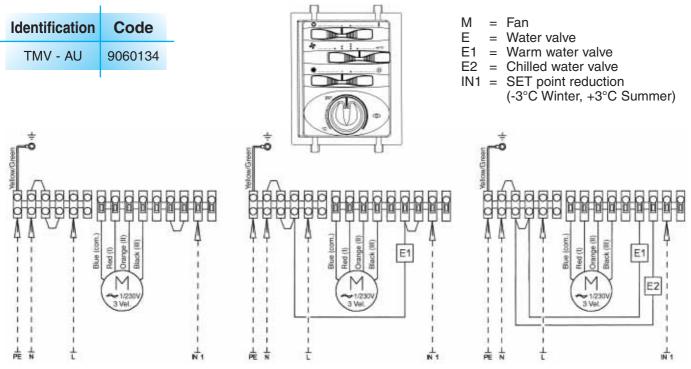
- Summer/Winter switch.
- Electronic room thermostat for fan control (ON-OFF).

- Summer/Winter switch. -
- Electronic room thermostat for fan or valves control (ON-OFF). -
- It allows to control the low temperature cut-out thermostat (TME).
- It allows to control the chilled water valve (ON-OFF) and the heating electric resistance (BEL) only in case that the coil is not feeded with hot water in winter (otherwise please use TMV-T-IAQ control with on/off switch for the electric resistance).

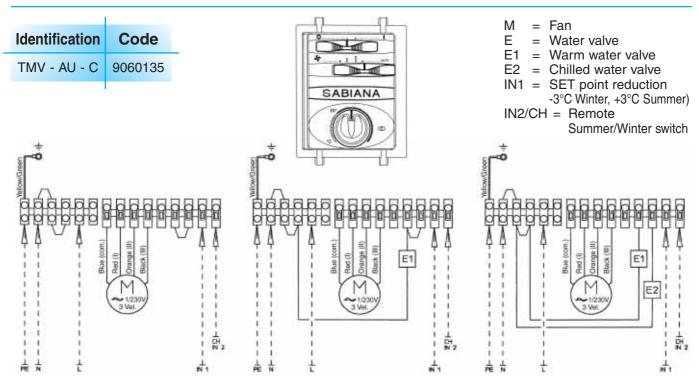
Electronic controls to be fitted on the unit for FSC, FST, FSR Futura SABIANA


Same control as the TMV-T, but the Summer/Winter switch is centralized and remote, or an automatic change-over is fitted on the water pipe (for 2-tube installations only).

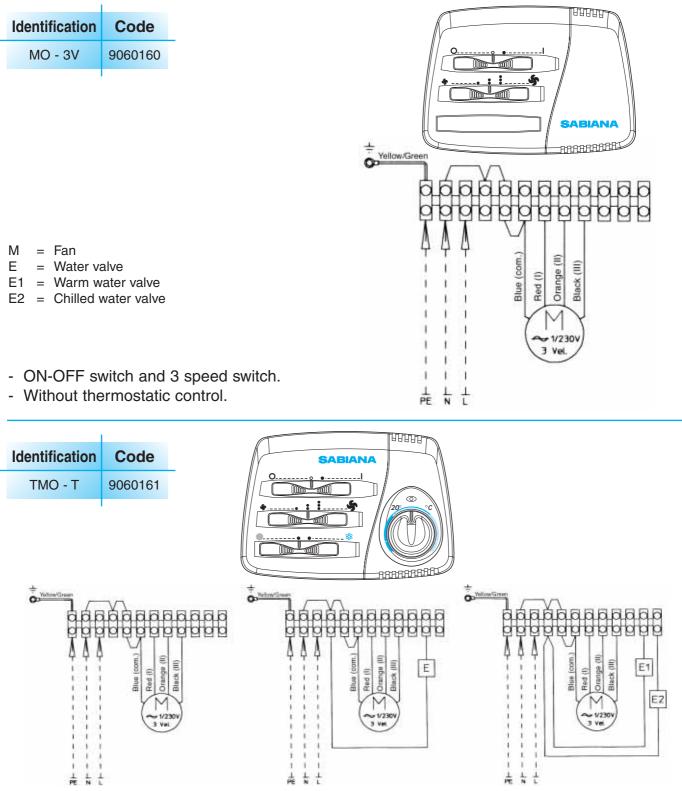
Identification	Code	
SEL-V (for version MV)	9060136	


- Speed switch (Slave):

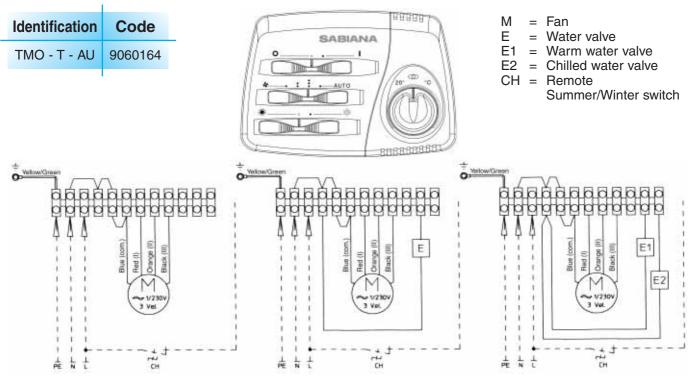
it allows to control up to 8 units with only one centralized thermostat (1 speed switch for each unit).


- For controls TMO-T and TMO-T-AU only.

Electronic controls to be fitted on the unit for FSC, FST, FSR Futura SABIANA



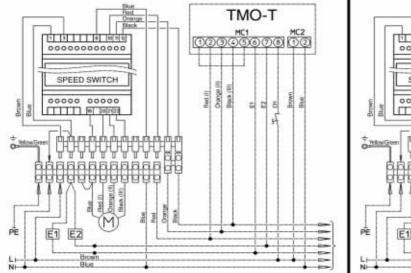
- Manual or automatic speed switch: on Auto Mode there is the automatic speed selection in accordance to the difference between room temperature and setpoint. When the setpoint is reached the fan go on OFF.
- Summer/Winter switch.
- Electronic room thermostat for valve(s) control (ON-OFF).
- It allows to control the low temperature cut-out (TME).
- It allows to control the chilled water valve (ON-OFF) and the heating electric resistance (BEL) only in case that the coil is not feeded with hot water in winter (otherwise please use TMV-AU-IAQ control with on/off switch for the electric resistance).
- **N.B.:** with 4 pipe installations and continuous chilled and hot water supply, it allows the automatic summer/winter change-over in accordance to the room temperature (-1,6°C = Winter, +1,6°C = Summer, Neutral Zone 3,2°C).

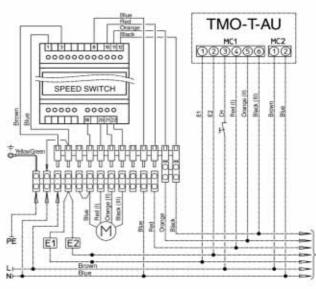

Same control as the TMV-AU, but the Summer/Winter switch is centralized and remote, or an automatic change-over is fitted on the water pipe (for 2-tube installations only).

Futura SABIANA

- ON-OFF switch.
- 3 speed switch.
- Summer/Winter switch.
- Electronic room thermostat for fan or valves control (ON-OFF).
- It allows to control the low temperature cut-out thermostat (TME).
- It allows to control the chilled water valve (ON-OFF) and the heating electric resistance (BEL) only in case that the coil is not feeded with hot water in winter (otherwise please use TMO-T-IAQ control with on/off switch for the electric resistance).
- It allows to control the summer or winter cycle with centralized and remote switch, or an automatic change-over fitted on the water pipe (for 2-tube installations only).

Futura SABIANA

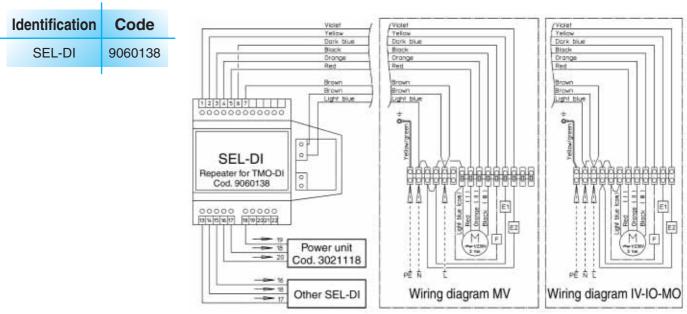



Same characteristic as TMO-T, adding:

- Manual or automatic speed switch.
- Manual or centralized Summer/Winter switch.
- Electronic thermostat for fan control (ON-OFF).
- Electronic thermostat for valve(s) control (ON-OFF).
- Simultaneus thermostatic control on the valves and fan.
- It allows to control the summer or winter cycle with centralized and remote switch, or an automatic change-over fitted on the water pipe (for 2-tube installations only).
- **N.B.:** with 4 pipe installations and continuous chilled and hot water supply, it allows the automatic summer/winter change-over in accordance to the room temperature (-1°C = Winter, +1°C = Summer, Neutral Zone 2°C).

Identification	Code
SEL - 0 (for versions IV - IO - MO)	9060137

- Speed switch (Slave):
- it allows to control up to 8 units with only one centralized thermostat (1 speed switch for each unit).For controls TMO-T and TMO-T-AU only.



Futura **SABIANA**

Volet Vitow Vitow Vitow Vitow Vitow	Visier Vellov Dork blue Black	Volet Yellow Dark blue Black	
1 2 3 4 5 6 7 9 10 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Cronge Red Light blue Brown Srown - Light blue	Oronge Red Light time Brown Brown Light time	
Power unit Cod. 3021118 0 <tr< td=""><td></td><td></td></tr<>			
TMO-DI	Pé à t Wiring diagram MV	ré à t Wiring diagram IV-IO-MO	
	E = 1	Fan Water valve	
switch. mer/Winter switch. n control (ON-OFF).	E1 = Warm water valve E2 = Chilled water valve IN1 = Remote Summer/Winter switch		
r	Power unit Cod. 3021118 TMO-DI Switch.	Power unit Order blas Cod. 3021118 Power unit October SEL-Di TMO-Di SEL-Di Switch. E mer/Winter switch. E1 n control (ON-OFF). IN1	

- Electronic thermostat for valve(s) control (ON-OFF).
- It allows to control the low temperature cut-out thermostat (TME).
- It allows to control the chilled water valve (ON-OFF) and the heating electric resistance (BEL) only in case that the coil is not feeded with hot water in winter.
- It allows to control the fan and the heating electric resistance.
- It allows to control up to 10 units with SEL-DI speed switch.
- **N.B.:** with 4 pipe installations and continuous chilled and hot water supply,
 - it allows the automatic summer/winter change-over in accordance to the room temperature $(-1,6^{\circ}C = Winter, +1,6^{\circ}C = Summer, Neutral Zone 3,2^{\circ}C).$

Speed switch (slave)

It allows to control up to 10 units with only one TMO-DI centralized thermostat.

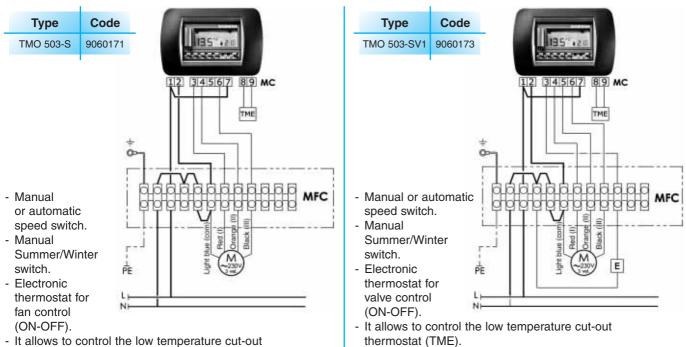
49

- IN2 = SET Point reduction

Futura SABIANA

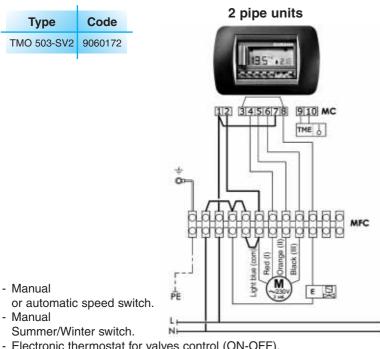
TMO 503

The TMO 503 control, S version for fan coils without valves and SV version for fan coils with valves, is designed to be installed in a series 503 wall box.


It is easy to use, it has a big and clear display, and a great precision.

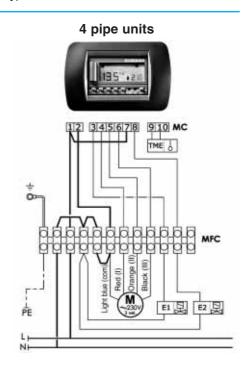
The control is supplied integral with the external frame, but it is possible to use frames of the most known brand on the market (BTicino, Vimar, AVE, Gewiss).

The highest working electric absorbtion is 200 W.


If the fan coil has an higher absorbtion or more units are connected to the same control, the speed switch SEL-O must be installed.

thermostat (TME).

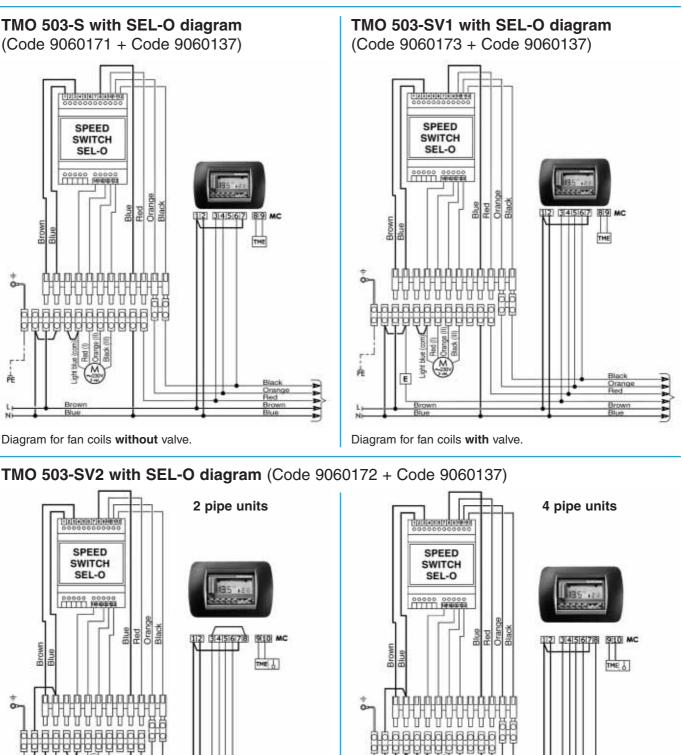
This control can be used only for 2 pipe systems (with one valve only).



- Manual
- Electronic thermostat for valves control (ON-OFF).

- It allows to control the low temperature cut-out thermostat (TME).

This control can be used also for 4 pipe systems (with 2 valves).


LEGEND	MFC = Fan Coil electronic board	M = Fan	E1 = Warm water valve
	MC = Control electronic board	E = Water valve	E2 = Chilled water valve

Futura SABIANA

TMO 503 with SEL-O

The TMO 503 control with the SEL-O speed switch can control up to 8 units with only one centralized thermostat (the SEL-O speed switch must be fitted on all the units).

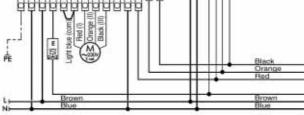


Diagram for fan coils with 1 valve.

LEGEND

MFC = Fan Coil electronic board **MC** = Control electronic board M = Fan E = Water valve

E1 = Warm water valve **E2** = Chilled water valve

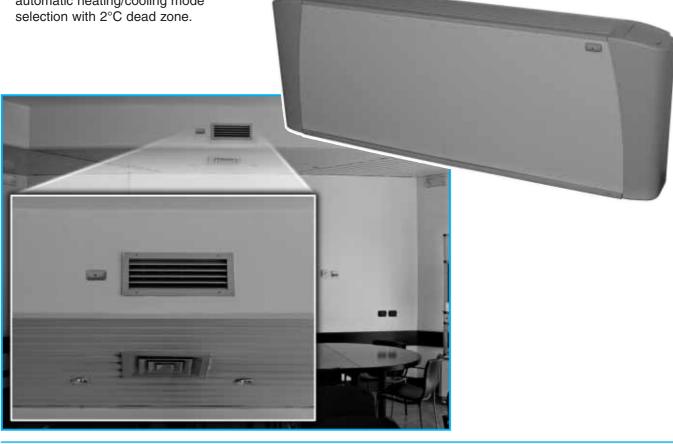
Diagram for fan coils with 2 valves.

Orang Red

Unit with infra-red remote control

Futura SABIANA

The Futura units can be supplied with a micro-processor managing system operated by an infra-red remote control with liquid crystall display.


Integral with the unit is the room temperature probe, the water temperature probe (cut-out thermostat), the infra-red remote control and the electronic board with RS485 communicating connection which can control up to 20 units connected between them.

The electronic board is of master/slave mode and the serial communicating connection allows the serial connection.

Control operations:

- Temperature set.
- Fan speed switch with possible automatic speed selection.
- 24 hours on/off program.
- on/off cooling valve control.
- on/off heating valve control.
- Control of the valves only or of the valves and the fan together.
- Valve control of 2 or 4 pipe systems with winter/summer switch on the infra-red control.
- Valve control of 4 pipe systems with automatic heating/cooling mode selection with 2°C dead zone.

Futura SABIANA

The electronic board, fitted inside the electrical panel, can manage different control modes so as to best satisfy the requirements of the installation. These modes are selected by suitably positioning the configuration dipswitches, which define the following main functions:

- 2 pipe / 4 pipe system
- Operation without / with remote control
- Continuous ventilation
- Close valve and stop fan in cooling mode (autofan function)
- Close valve and stop fan in heating mode (autofan function)
- Close valve and stop fan in both cooling and heating mode (autofan function)

The autofan function allows the simultaneous on/off control of the water valve and the fan, while at the same time optimising the operation of the unit. When reaching the set point, the controller closes the water valve (valve off) and only 3 minutes later stops the fan, so as to correctly compensate for the valve closing time. To prevent the air probe from measuring an incorrect temperature, when the fan is off the controller runs a number of fan ON cycles to annul the effect of any stratification of the air in the room.

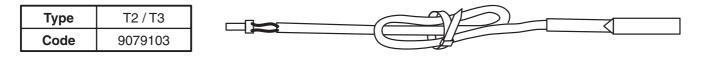
The autofan function can be activated in cooling only mode, in heating only mode or in both operating modes.

In two pipe systems, a water probe can be installed on the supply pipe to the unit upstream of the water valve. Based on the temperature read in this section of the pipe, the device will select either cooling or heating operation.

The electronic board also features a contact for connection to a window switch or remote enabling signal. When the contact is closed, the unit can operate, when the contact is open, the unit stops. The same contact can be used for starting and stopping the unit from an external timer or any other remote switching device.

In addition, a series of units can be switched on or off at the same time, by using a flip-flop switch connected to the terminals present on the board.

Sensors that require a 12 volt power supply, for example occupancy sensors, can be connected to other terminals on the electronic board and then to the on/off contacts. The board is able to power external sensors with a maximum current of 60mA.


Low temperature cut-out thermostat accessory

Suitable for infra-red remote control only.

NTC sensor to be connected to the control board for the following working modes:

- if connected to the T3 contact of the board it works like a cut-out thermostat: fitted between the coil fins it stops the fan when the water temperature is lower than 38°C and it starts the fan when the water temperature reaches 42°C.
- if connected to the T2 contact of the board it works like a change-over: fitted in contact to the supply pipe it controls automatically the winter/summer switch in accordance to the water temperature.

When one sensor is connected to the T2 contact and one to the T3 contact both working modes are performed.

Futura SABIANA

Connection of the units in series and centralized management

A group of FUTURA units can be connected via a serial link and can consequently be managed at the same time by just one infrared remote control.

Using the special jumper present on the board, one unit must be configured as the master, and all the others as slaves. It is clear that the remote control must be pointed at the receiver on the master unit.

To avoid problems, it is recommended to install and connect the receiver only on the master unit.

Another option available by the serial communication between the units is possibility to connect up to 60 FUTURA units in series (the maximum length of the connection cable must not exceed 800 m) and manage them with just one wall-mounted intelligent controller. The wall-mounted controller can be used to set the operating mode for each individual unit connected, display the operating conditions of each individual unit, and set the on/off time sets for each day of the week. If more than 60 units need to be connected, two or more wall-mounted intelligent controllers must be used. Each wall-mounted controller only manages the units it is connected to.

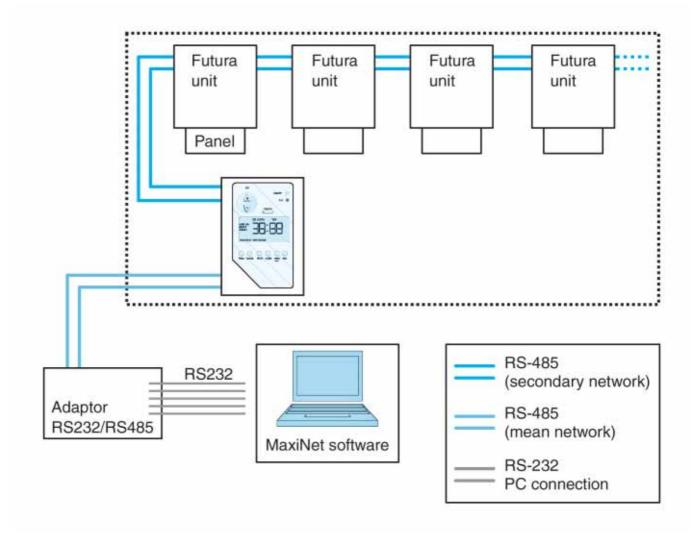
The PCR-DI control is used to manage a series of fan coils, up to a maximum of 60 units, from one single control point. The PCR-DI control communicates via a serial line with all the units connected, with the possibility of controlling them all together or individually. In fact, the unique address of each individual fan coil means that all the units can be called at the same time, or the individual unit called, to perform the following functions:

- display the current operating mode, the fan speed, the set point
- display the room temperature measured on the individual unit
- turn all the units on and off at the same time or alternatively each unit individually
- change the operating mode (fan only, heating, cooling, automatic changeover)
- change the set point

Each function can then be sent to all the units connected, or alternatively to each individual unit. Different set points or operating modes can be set for each individual unit.

The PCR-DI panel can also be used for the time management of the units over the week. Two on times and two off times can be set on the units for each day of the week.

The weekly programming mode can be stopped at any time, returning to the manual setting and then weekly programming mode can subsequently be started again.



PC Maxinet Software

Connection of a Futura network of more than 60 units

Controls to be fitted on the MV - MVB models

Futura SABIANA

FUTURA MV-MVB CONTROL OPERATIONS FUTURA MV-MVB CONTROL IDENTIFICATION	MV-3V	TMV-M	TMV-T	TMV-C	TMV-AU	TMV-AU-C	MV-3V-IAQ	TMV-M-IAQ	TMV-T-IAQ	TMV-C-IAQ	TMV-AU-IAQ	TMV-AU-C-IAQ
ON-OFF switch												
ON-OFF switch for Crystall electrostatic filter												
or electric resistance												
Manual 3 speed switch Manual/Automatic												
3 speed selection												
Summer/Winter switch												
Remote centralized summer/winter switch or by an automatic change-over fitted on the water pipe				•								
Automatic Summer/Winter switch with neutral zone for 4 pipe installation with 2 valves												
Room thermostat for fan control (ON-OFF)												
Room thermostat for 1 valve control (2 pipe installation)												
Room thermostat for 2 valve control (4 pipe installation)												
Room thermostat for chilled water valve (SUMMER) and electric resistance (WINTER) control (in winter only the resistance is working)				•	•							
Room thermostat for fan and electric resistance control (not for CRYSTALL)												
Installation of electronic low temperature cut-out thermostat (TME)												
Installation of bimetallic low temperature cut-out thermostat (TMM)												
FUTURA MV-MVB CONTROL CODE	9060130	9060131	9060132	9060133	9060134	9060135	0002906	9063001	9063002	80083003	9063004	9063005

Remote controls for MO - IV - IO models

Futura SABIANA

FUTURA MO-IO-IV CONTROL OPERATIONS FUTURA MO-IO-IV CONTROL IDENTIFICATION	MO-3V	T-OMT	TMO-T-AU	TMO-DI	TMO-503-S	TMO-503-SV1	TMO-503-SV2	MO-3V-IAQ	TMO-T-IAQ	TMO-T-AU-IAQ
ON-OFF switch										
ON-OFF switch for Crystall electrostatic filter or electric resistance										
Manual 3 speed switch										
Manual/Automatic 3 speed selection										
Summer/Winter switch										
Remote centralized summer/winter switch or by an automatic change-over fitted on the water pipe			•							•
Automatic Summer/Winter switch with neutral zone for 4 pipe installation with 2 valves										
Room thermostat for fan control (ON-OFF)										
Room thermostat for 1 valve control (2 pipe installation)										
Room thermostat for 2 valve control (4 pipe installation)										
Simultaneous thermostatic control on the valves and fan										
Room thermostat for chilled water valve (SUMMER) and electric resistance (WINTER) control (in winter only the resistance is working)			•	•					•	•
Room thermostat for fan and electric resistance control (not for CRYSTALL)										
Installation of electronic low temperature CUT-OUT thermostat (TME)										
Installation of bimetallic low temperature CUT-OUT thermostat (TMM)										
FUTURA MO - IO - IV CONTROL CODE	9060160	9060161	9060164	9060163	9060171	9060173	9060172	9063020	9063021	9063023

TME low temperature cut-out thermostat

To be fitted between the coil fins.

To be used with the following controls: TMV-T, TMV-C, TMV-AU, TMV-AU-C, TMO-T, TMO-T-AU, TMO-DI, TMO-503 and corresponding IAQ controls.

VERSION

MODEL

CODE

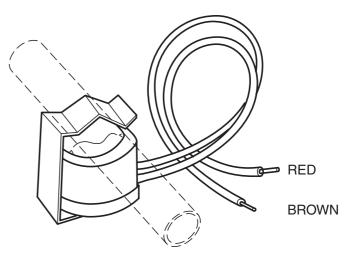
FSC - FST - FSR

MV - MVB

9060103

 VERSION
 FSC - FST - FSR - CRYSTALL FS

 MODEL
 MV - MVB - MO - IV - IO

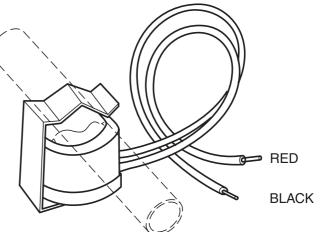

 CODE
 3021091

It stops the fan when the water temperature is lower than 38°C and it starts the fan when is higher than 42°C.

TMM low temperature cut-out thermostat

To be installed in contact with the hot water circuit. To eliminate cold air blow. Installed by the installing engineer. To be used with the following controls: MV-3V, MO-3V, MV-3V-IAQ, MO-3V-IAQ. For units working on heating only.

VERSION	FSC - FST - FSR - CRYSTALL FS
MODEL	MV - MVB - MO - IV - IO
CODE	9053048

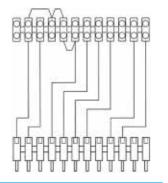


It stops the fan when the water temperature is lower than 32°C and it starts the fan when is higher than 42°C.

Change Over CH 15-25

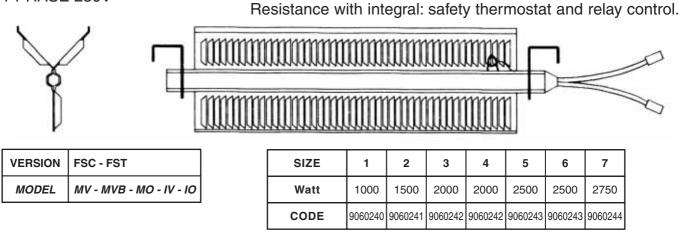
Automatic summer/winter switch to be installed in contact with the water circuit (for 2-tube installations only). To be used with the following controls: TMV-C, TMV-AU-C, TMO-T, TMO-T-AU, TMO-DI.

VERSION	FSC - FST - FSR - CRYSTALL FS
MODEL	MV - MVB - MO - IV - IO
CODE	9053049

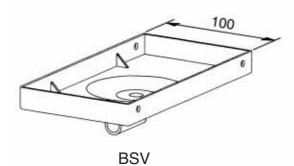


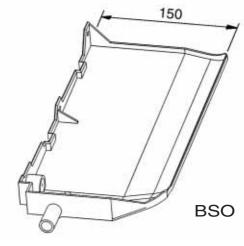
Identification	Code
KIT	9060103

ï


Terminal board adaptor kit

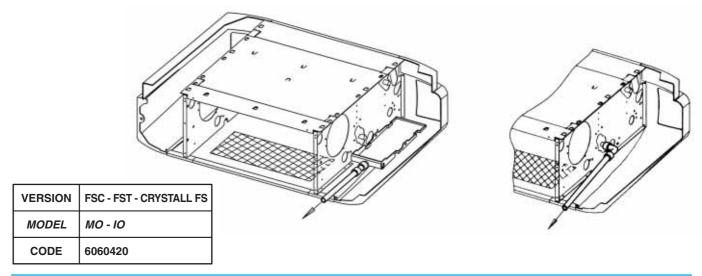
To connect the units MV and MVB with the MO-3V, TMO-T, TMO-T-AU or TMO-503 controls, a terminal board adaptor kit is available on request.



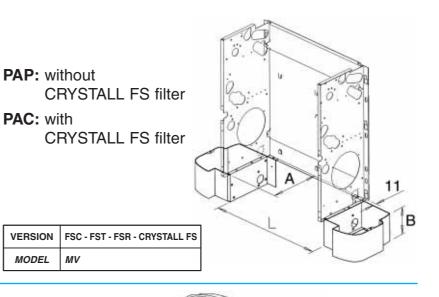

BEL electric resistance

1 PHASE 230V

Extension condensate collection tray to cover valve assembly

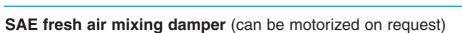


VERSION	FSC - FST - CRYSTALL FS	FSR
MODEL	MV - MVB - IV	MV
CODE	6060400	6062125


VERSION	FSC - FS	Т
MODEL	MO - IO	
CONNECTION SIDE	LEFT	RIGHT
TYPE	BSO-SX	BSO-DX
CODE	6060402	6060403

SCR plastic condensate drain pipe with fast connection (allows correct condensate drain)

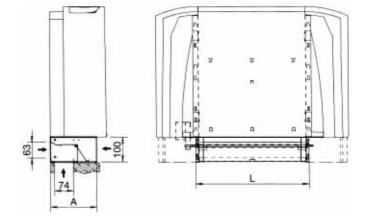
PAP - PAC feet

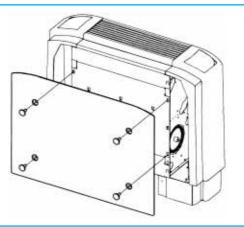

VERSIO	N			PAP	PAC	CODE
		Α	L	в	в	
FSC - FST	1	185	430			
FSC - FST	2	185	645	100	200	9060150
FSC - FST	3-4	185	860	100		9060150
FSC - FST	5	185	1119			
FSC	6-7	215	1119	100	200	9060151
FSR	1	143	330			
FSR	2	143	430	100		0000000
FSR	3	143	645	100	200	9062200
FSR	4	143	860			

GAP

Aluminium low intake grid (to be installed with PAP - PAC feet)

VERSION	F	SC - FST - C	⁼s		
MODEL	N	IV			
SIZE		1	2	3 - 4	5 - 6 - 7
CODE		9060230	9060231	9060232	9060233


VERSIO	N	Α	L	CODE
FSC - FST	1	185	454	6060410
FSC - FST	2	185	669	6060411
FSC - FST	3-4	185	884	6060412
FSC - FST	5	185	1099	6060413
FSC	6-7	215	1099	6060414


VERSION	FSC - FST - CRYSTALL FS
MODEL	MV - IV - IO

PCV rear closing panel

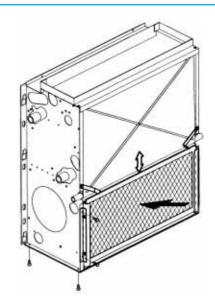
VERSION	FSC - FST - FSR - CRYSTALL FS
MODEL	MV - MVB

VERSION	CODE	
-	FSR 1	9062005
FSC - FST 1	FSR 2	9060180
FSC - FST 2	FSR 3	9060181
FSC - FST 3-4	FSR 4	9060182
FSC - FST 5-6-7	-	9060183

VER

PCO bottom closing panel

T			_			
	FSC - FST					
	IV - 10					2 4
	1	2	3 - 4	5	6 - 7	\checkmark
	9060190	9060191	9060192	9060193	9060194	٥


frontal	intake	kit
	frontal	frontal intake

VERSION

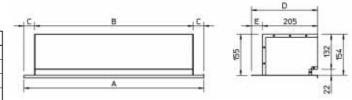
MODEL

TAILLE CODE

Bottom closing panel and filter sliding guides

VERSION	FSC - FST				
MODEL	IV - 10				
TAILLE	1	2	3 - 4	5	6 - 7
CODE	9060220	9060221	9060222	9060223	9060224

FRD straight inlet flange


Can be used together with GRAG air inlet grid. Made of galvanized steel.

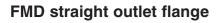
		_					
VERSION	FSC - FST						
MODEL	IV - 10]					
SIZE	TYPE	A	В	С	D	G	CODE
1	FRD - 1	454	390	32	217	16	9060720
2	FRD - 2	669	590	39,5	217	16	9060721
3 - 4	FRD - 3/4	884	790	47	217	16	9060722
5	FRD - 5	1099	990	54,5	217	16	9060723
6 - 7	FRD - 6/7	1099	990	54.5	247	46	9060724

FR 90 90° inlet flange

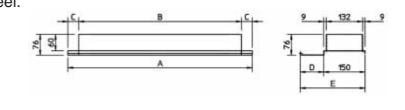
Can be used together with GRAP air inlet grid. Made of galvanized steel.

VERSION	FSC]					
MODEL	IV - 10						
SIZE	TYPE	Α	В	С	D	Е	CODE
1	FR90 - 1	454	390	32	216	11	9060710
2	FR90 - 2	669	590	39,5	216	11	9060711
3 - 4	FR90 - 3/4	884	790	47	216	11	9060712
5	FR90 - 5	1099	990	54,5	216	11	9060713
6 - 7	FR90 - 6/7	1099	990	54,5	246	41	9060714

GRAP air inlet grid


To be used with FR 90 90° inlet flange. Made of anodized aluminium.

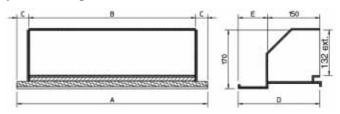
VERSION	FSC			
MODEL	IV - 10			
SIZE	TYPE	DESCRIPTION	в	CODE
1	GRAP - 1	Grid 400x150	375	9060760
2	GRAP - 2	Grid 600x150	575	9060761
3 - 4	GRAP - 3/4	Grid 800x150	775	9060762
5 - 7	GRAP - 5/7	Grid 1000x150	975	9060763


GRAG air inlet grid

To be used with FRD straight inlet flange. Made of anodized aluminium.

VERSION	FSC - FST			
MODEL	IV - 10			
SIZE	TYPE	DESCRIPTION	В	CODE
1	GRAG - 1	Grid 400x200	375	9060764
2	GRAG - 2	Grid 600x200	575	9060765
3 - 4	GRAG - 3/4	Grid 800x200	775	9060766

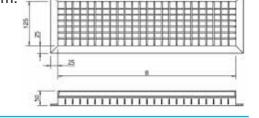
VERSION FSC - FST Made of galvanized steel									
MODEL	IV - 10]							
SIZE	TYPE	Α	В	С	D	Е	CODE		
1	FMD - 1	454	390	32	55	205	9060730		
2	FMD - 2	669	590	39,5	55	205	9060731		
3 - 4	FMD - 3/4	884	790	47	55	205	9060732		
5	FMD - 5	1099	990	54,5	85	205	9060733		
6 - 7	FMD - 6/7	1099	990	54,5	85	235	9060734		


B

111111

FM 90 90° straight outlet flange

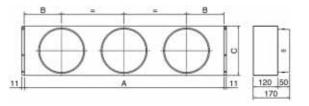
Made of galvanized steel insulated with polyethylene lining.


VERSION	FSC						
MODEL	IV - 10						
SIZE	TYPE	Α	в	С	D	Е	CODE
1	FM90 - 1	454	390	32	205	55	9060700
2	FM90 - 2	669	590	39,5	205	55	9060701
3 - 4	FM90 - 3/4	884	790	47	205	55	9060702
5	FM90 - 5	1099	990	54,5	205	55	9060703
6 - 7	FM90 - 6/7	1099	990	54,5	235	85	9060704

BMA air outlet grid

Double louvre grid to be fitted to the duct, to the FMD straight outlet flange or to the FM 90 90° outlet flange. Made of anodized aluminium.

VERSION	FSC - FST		
MODEL	IV - 10		
SIZE	TYPE	В	CODE
1	BMA - 1	375	9060750
2	BMA - 2	575	9060751
3 - 4	BMA - 3/4	775	9060752
5 - 7	BMA - 5/7	975	9060753



PRC air inlet spigot plenum

Made of galvanized steel insulated with polyethylene lining.

VERSION	FSC							
MODEL	IV - 10]						
		Α	в	с	SPIGOTS		0005	
SIZE	TYPE	A		вс		Ø	CODE	
1	PRC - 1	432	112	216	2	150	9060780	
2	PRC - 2	647	166	216	2	190	9060781	
3 - 4	PRC - 3/4	862	161	216	3	190	9060782	
5	PRC - 5	1077	188,5	216	3	190	9060783	
6 - 7	PRC - 6/7	1077	188,5	246	3	190	9060784	

All the plenums are supplied with spigots for the connection of flexible ducts.

PMC spigot diffuser

Made of galvanized steel insulated with polyethylene lining.

VERSION	FSC	
MODEL	IV - 10	

SIZE	ТҮРЕ		ь	с	SPIGOTS		CODE	
SIZE	TTPE	PE A B		C	N°	Ø	CODE	
1	PMC - 1	432	112	216	2	150	9060740	
2	PMC - 2	647	166	216	2	190	9060741	
3 - 4	PMC - 3/4	862	161	216	3	190	9060742	
5	PMC - 5	1077	188,5	216	3	190	9060743	
6 - 7	PMC - 6/7	1077	188,5	246	3	190	9060744	

GRAFP air inlet grid with filter

To be fitted to the FR 90 90° inlet flange.

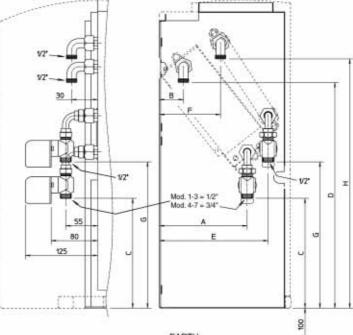
Made of anodized aluminium.

VENDION	100		
MODEL	IV - 10		
SIZE	TYPE	в	CODE
1	GRAFP - 1	375	9060770
2	GRAFP - 2	575	9060771
3 - 4	GRAFP - 3/4	775	9060772
5 - 7	GRAFP - 5/7	975	9060773

GRAFG air inlet grid with filter

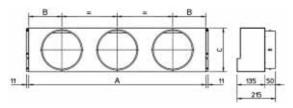
To be fitted to the FRD straight inlet flange.

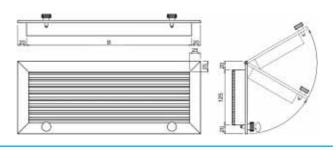
VERSION	FSC	n N	Made o	f anodized aluminium.
MODEL	IV - 10			
MODEL	10-10			
SIZE	TYPE	В	CODE	
1	GRAFG - 1	375	9060774	
2	GRAFG - 2	575	9060775	
3 - 4	GRAFG - 3/4	775	9060776	
5 - 7	GRAFG - 5/7	975	9060777	

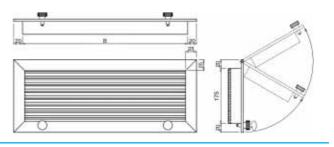

V2 main and auxiliary 2 way valve

Control valve kit: 2 way valve, ON-OFF, with electric control and mounting kit.

VERSION		FSC - FST 1÷3	FSC - FST 4÷ 7 / FSR
FITTED		9060278	9060279
NOT FITTED		9060276	9060277
	DN	15	20
Valve	(Ø)	(1/2")	(3/4")
	Kvs	1,7	2,8


VERSION	FSC - FST
MODEL	MV - MO - IV - IO - MVB

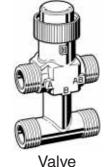

TTED
276
277
277
277



EARTH

All the plenums are supplied with spigots for the connection of flexible ducts.

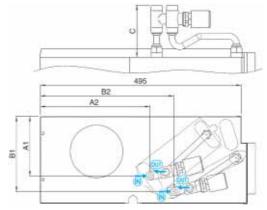
Dimensions: ± 10 mm.


Accessories for FSC, FST, FSR, CRYSTALL FS

Futura SABIANA

VSD semplified valve kit

3 way valve, (ON-OFF) with electric control and mounting kit.


VERSION	FSC - FST - CRYSTALL FS
MODEL	IV - 10

with flat connection

	VERSION		FSC - FST 1 ÷ 3 AND ADDITIONAL BATTERY	FSC - FST 4 - 5	FSC 6 - 7
	FITTED NOT FITTED		9060386	9060388	9060390
			9060385	9060387	9060389
		DN	15	20	20
	Valve	(Ø)	(1/2")	(3/4")	(3/4")
		Kvs	1,6	2,5	2,5

R

			BATTERY				
		MA	AIN	ADDIT	IONAL		ш.
VERSION	MODEL	A1	A2	B1	B2	с	10
FSC - FST	1 ÷ 3	152	270	185	330	116	± su
FSC - FST	4 - 5	152	268	185	330	124	Dimensions
FSC	6 - 7	177	270	210	327	124	Dime

55

Α

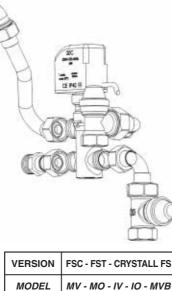
25

50

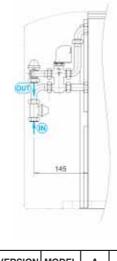
15

VBP main battery 3 way valve

Control valve kit: 3 way valve, ON-OFF, with electric control and mounting kit with regulating check valve.


VERSION	FSC - FST - FSR - CRYSTALL FS
MODEL	MV - MO - IV - IO - MVB

VER	SION	FSC - FST 1 ÷ 3	FSC - FST 4 ÷ 7 / FSR	
FIT	TED	9060272	9060273	
NOT F	ITTED	9060270	9060271	
	DN	15	20	
Valve	(Ø)	(1/2")	(3/4")	
	Kvs	1,6	2,5	
Regulating check valve Ø		1/2"F	1/2"F	
check valve Ø		1/2 F	1/2 F	


VBA auxiliary battery 3 way valve

Control valve kit: 3 way valve, ON-OFF, with electric control and mounting kit with regulating check valve.

FIT	ΓED	9060275		
NOT F	ITTED	9060274		
	DN	15		
Valve	(Ø)	(1/2")		
	Kvs	1,6		
Regulating check valve Ø		1/2"F		

MODEL

VERSION MODEL

1 ÷ 5

6 ÷ 7

1 ÷ 4

FSC - FST

FSC

FSR

VERSION	MODEL	Α	В	с	D
FSC - FST	1 ÷ 5	120	195	240	340
FSC	6 ÷ 7	135	200	235	330

100

EARTH

D

290

315

EARTH

Е

105

95

С

190

185

200

в

85

120

90

Dimensions ± 10 mm.

8

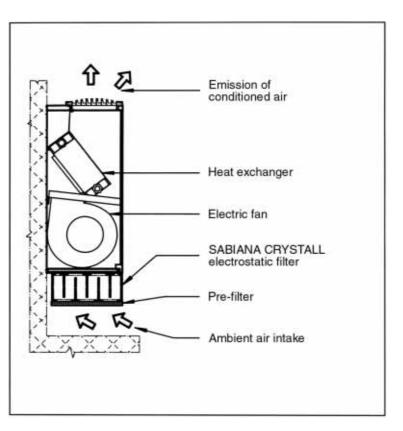
ELECTROSTATIC FILTER

The **CRYSTALL SABIANA** electrostatic filter matches the need for better air conditioning with the concepts of space and design.

With this filter the various stages of air treatment are combined in one appliance.

Thanks to this new patented filter, air pollutants such as cigarette smoke, dust, pollen and most biological organisms are eliminated.

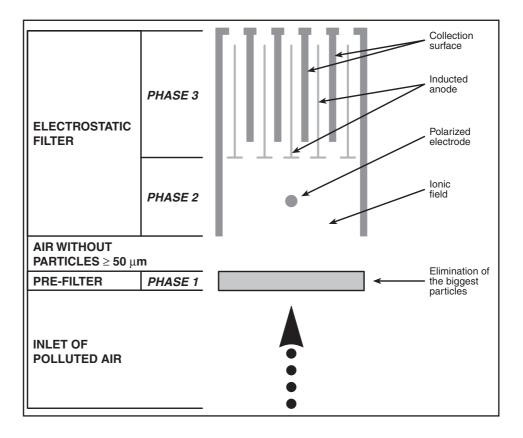
In addition, as fresh air is not being introduced to obtain the best climatic conditions, there are consequential energy savings.



CRYSTALL FS

The patented CRYSTALL SABIANA works on the electrostatic principle that electric charges of opposite polarity attract each other.

When crossing the first filter section the particles in the air pass through an electric field which gives them a positive charge. In the second filter section the particles are attracted and adhere to the filter plates which have a negative electrostatic charge. In this way while passing through the filter the air is cleaned and any impurity is removed.



Futura **SABIANA**

Then the smallest particles $(50 \div 0.01 \ \mu m)$ are exposed to an intensive ionic field and are polarized. *(Phase 2)*

The charged particles passing through the second filter section, are pushed back by the anode and attracted to the collection surfaces by a strong, induced magnetic field. (*Phase 3*)

The air which leaves the unit is free from polluting particles.

Indoor Air Quality (IAQ)

The expression Indoor Air Quality (IAQ) covers all the procedures and methodologies used to **improve the quality of the air we breathe** in the places where we live and work, from all points of view, from temperature to cleanliness, from relative humidity to electrical charge, etc. Thanks to its new patented electronic filter, **the Crystall electrostatic filter totally eliminates the pollutants present in the air**, including tobacco smoke, dust, fibres, microbiological substances such as bacteria, fungi, etc., which are harmful to human health (source: WHO, \leq PM 2.5). Purifying the air means not only greater well-being, but also **energy saving**, as the outdoor air changes that are required to restore ideal climatic conditions and that entail greater consumption, are significantly reduced (it is sufficient to enter the quantity of air required to restore the optimum level of CO₂ - source: ASHRAE STD 62-89). Moreover, according to the new ASHRAE STD 62-89R, air recirculated by the Crystall appliance can be considered as outdoor air, to be added to the minimum requirements.

Purifying the air with the Sabiana Crystall appliance also **entails no reduction of living room space**, as the dimensions of the fan convector are practically unchanged (just 10 cm higher). The positioning of the electronic filter allows **simple and effective maintenance** and, as it is easy to wash, **its working life is practically unlimited**. The modularity of the filter components and their ease of mounting make the system extremely competitive in terms of cost compared with other types of filters present on the market. In spring and autumn, if environmental air conditioning/heating is not required, the appliance acts simply as an **air purifier**.

The concentration of particles suspended in one litre of air varies from 4.000, in high mountain areas, to 400.000, in a living room environment. The reference unit used to measure the dimensions of a particle is the micron (μ m); 1 μ m = 0.001 mm.

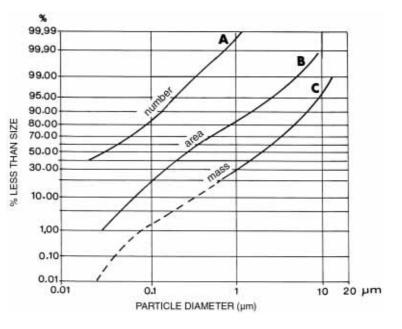
The graph on the following page shows the distribution of particles according to their size, weight and quantity.

The dimensions and health risks associated with the particles that are most commonly present in the air are indicated in the table on the following page.

The graph on page 69 illustrates the filtering capacity of the most common filters, depending on particle size.

As can be seen, the electronic filter is the only filter capable of stopping particles with dimensions less than 1 μ m (more than 99% of all the particles present in the air) without altering the appliance air flow (additional load losses are in fact negligible).

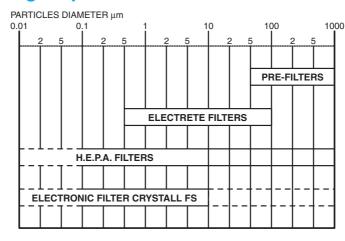
Absolute mechanical filters cannot be used on the fan convector, as they create unacceptable load losses.


The electrostatically charged polypropylene filtering fabric (passive Electrete type), sometimes used on some appliances, such as fan convectors or Split System units, has a number of disadvantages: it becomes quickly saturated, it becomes less effective in the presence of high levels of humidity, and its high load losses increase as the filter becomes saturated.

Grystall

1) Particle size distribution of atmospheric dust (Source: ASHRAE Handbook Fundamental)

In the diagram there are three different curves that show the particle distribution in accordance to their number (A), area (B) and mass (C). The diagram shows that the 99,9% of the particles in the air is smaller than 1 μ m and their mass is only 30% of the total mass. The particles bigger than 1 μ m are only 0,1% of the number, but they are 70% of the total mass.


Table 1.Possible indoor concentration of pollutants and its ratioto their outdoor concentration

pollutants	indoor source	outdoor source	indoor concentration	indoor/outdoor ratio	environments
carbon monoxide	fuel-burning equipment, internal combustion engines, defective heating boilers	industrial processes, motor traffic, combustion processes	100 mg/kg 10-100 ppm	>> 1	houses, offices, shops, cars
breathable particles	naked flames, cigarettes, sprays, aerosols, kitchen fumes, condensation of volatile substances	combustion, fragmentation of solid substances of animal, vegetable and mineral origin	0.1-0.7 mg/m³	>> 1	homes, offices, cars, restaurants, bars, public facilitie
organic vapours	combustion, solvents, artificial resins, insecticides, aerosols	/ /	NA	> 1	homes, offices, bars, restaurants, public facilities, hospitals
nitrogen dioxide	gas ring, water heater, dryer combustion	motor traffic	0.2-1 mg/m ³	>> 1	homes
sulphur dioxide	heater burners	heating, motor traffic	0.02 mg/m ³		
total suspended particles without smokers	re-suspension of heating system combustion	/ /	0.1/1 mg/m ³	1	homes, offices, restaurants, transport vehicles
sulphates	kitchen rings		0.005 mg/m³	< 1	
formaldehyde	insulation items, plastic resins, furniture finishing	/ /	0.05/1 mg/kg	> 1	homes, offices
radon	construction materials, ground, groundwater	/ /	0.1/200 nCl/m ³	>> 1	cellars, homes, buildings
asbestos	insulation and cladding	/ /	< 10 ⁶ fibres m ³	1	homes, schools, offices
mineral and synthetic fibres	plastics, fabrics, carpets, drapes	fragmentation of solid substances	NA	/ /	homes, schools, offices
carbon dioxide	combustion, human and animal respiration	/ /	3 g/kg	>> 1	homes, schools, offices
micro-organisms	people, animals, insects, plants, fungi, humidifiers, air conditioners, dehumidifiers	pollen, bacteria, virus	NA	> 1	homes, schools, hospitals, offices

Filtering capacity of the most common filters depending on particle size

STANDARD: ASHRAE 62-1989

CRYSTALL FS

The ASHRAE 62-1989 Standard defines as "acceptable" air in a closed environment that does not contain any concentrations of known pollutants that could entail health risks for the people present and such that more than 80% of those present do not express any dissatisfaction. The simplest way to obtain the required air quality is to dilute the pollutants present with outdoor air. The quantity of outdoor air required is indicated in the table, reproduced on the next page, according to the ASHRAE 62-1989 Standard.

As can be easily understood, the more outdoor air is brought into the environment the more energy costs increase to achieve ideal climatic conditions. The table reproduced at the bottom of the page shows how, with adequate air filtering, it is possible to decrease considerably the quantity of outdoor air to be brought into the environment (up to 4-5 times less); the thermal energy dissipated due to ventilation is in fact in direct proportion to the number of air changes, as indicated in the following equation:

$Qv = \Delta T \cdot \underline{R} \cdot D \cdot C \cdot Vol.$				
	3600			
Qv =	Thermal energy lost for ventilation	- Watt		
$\Delta T =$	Indoor-Outdoor difference (T)	- °C		
R =	A.C.H.			
D =	Air density	- Kg/m³		
C =	Specific air heat	- J/Kg-°C		
Vol =	Room size	- m³		

Outdoor air according to standards STD ASHRAE 62-89 and 62-89R

Environment	ASHRAE 62-89		ASHRAE 62-89R (DVR)		
Environment	m³/h pers.	m³/h m²	m³/h pers. (Rp)	m³/h m² (Rb)	Diversity (D)
Office space	36	-	10,8	1,26	1
Conference rooms	36	-	9	1,26	1
Retail sales floor	-	0,9 to 5,4	12,6	3,06	0,75
General classrooms	28,8 to 36	-	10,8	1,98	1

Example of energy saving in accordance to the new ASHRAE 62-89R standard

MSR: Minimum Supply Rate **DVR:** Design Ventilation Rate

When the minimum outdoor air flow is lower than the minimum supply rate (**DVR**<**MSR**), is possible to use a recirculation system to integrate and satisfy the requested quantity.

MSR = (DVR + Vr)

Vr – 100 . (MSR – DVR) / Ef (m³/h)

Vr: filtered ricirculated air

Ef: filter efficiency for \leq 3 micron particles

EXAMPLE: Parameters assumed are:

Office space:	$Ab = area 20 m^2$	
	$Rb = 1,26 \text{ m}^3/\text{h per m}^2$	(ASHRAE 62-89R)
N° of people:	$\mathbf{Pd} = \mathbf{n}^{\circ} 4$	
	Rp = 10,8 m ³ /h per person	(ASHRAE 62-89R)
	D = 1	

Where:

Rp: minimum outdoor air per person

Pd: number of people (occupant)

- **D**: Diversity factor
- **Rb**: minimum outdoor air per building component

Ab: building area

DVR =	(Rp . Pd . D)	+	(Rb . Ab)
	(10,8 x 4 x 1)	+	(1,26 x 20) = 68,4 m ³ /h

MSR = \geq **27** m³/h per person

68,4 : 4 = 17,1 m³/h per person < of 27 m³/h minimum requested

in fact: MSR = $27 \times 4 = 108 \text{ m}^3/\text{h}$ required difference: $108 - 68,4 = 39,6 \text{ m}^3/\text{h}$ If the design ventilation rate to a space is less than MSR per person, filtered recirculated air must be added to compensate using the following formula: $Vr = 100 \cdot [(27 \cdot \text{Pd} \cdot \text{D}) - \text{DVR}] / \text{Ef}$

100 x (108 - 68,4) / 80 = 49,5 m³/h recirculated air

By STD ASHRAE 62-89R:

68,4 m³/h outdoor air (144 m³/h STD 62-89)

□ 49,5 m³/h air filtered and recirculated by CRYSTALL

Therefore, installing an air circulation system with the CRYSTALL-SABIANA electronic filter, the energy saving that can be achieved is remarkable. In fact, only 68,4 m³/h of outdoor air is necessary, instead of 144 m³/h in case of total fresh air intake in accordance to STD ASHRAE 62-89 (see TAB page 69).

Calculation Procedure for choosing the model and number of CRYSTALL appliances required

The formulas to be used to calculate the number and model of units required to obtain the desired air cleanliness are indicated below. This rigorous method should be applied whenever the concentrations of pollutants and the number of people present in the room are known.

If these values are not known, the table reproduced on page 78, which refers to situations that are considered standard with a certain kind of pollutant in relation to the total room volume, can be used.

Cigarette smoke is the most common pollutant and also the most difficult to filter, as the dimensions of the component particles are less than 1 μ m. This kind of pollutant is taken into account by us for the following calculations.

CALCULATION METHOD (according to STD ASHRAE 62-89)

Let us assume that a room is to be used as an office. It has a given volume and is occupied by a number of people, some of whom are smokers. This entails the production of pollutant (in this case, cigarette smoke). Let us now quantify the quantity of outdoor air (Vo = m^3/min .) required to dilute the particles (μ g/m³) restoring the normal level of CO₂ (%), so that the air is not considered unsatisfactory by the majority of the occupants.

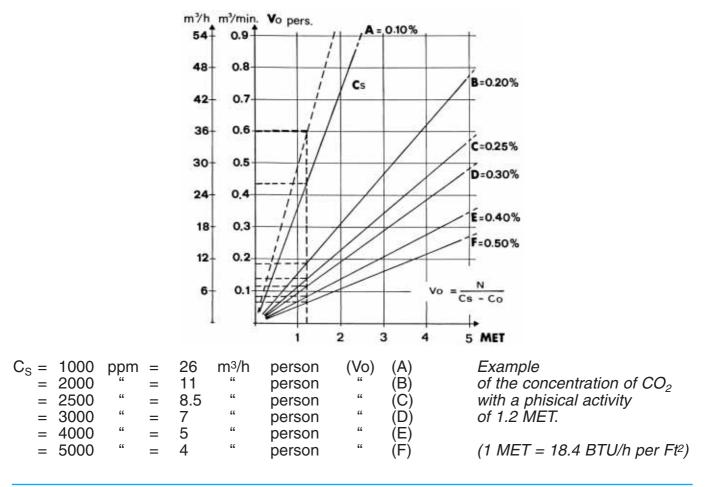
The ASHRAE 62-1989 Standard requires, for this kind of room (office), a minimum input of outdoor air amounting to 0.6 m³/min. per person (see table on page 69), if the production of the pollutant is limited.

As we will see in our example, this value is completely insufficient if 50% of the occupants are smokers with a consumption of 1 cigarette per hour per person. The quantity of outdoor air required by the ASHRAE standard is sufficient to maintain a concentration of CO_2 below 0.1% in a room where physical activity is carried on equal to 1.2 MET (see graph N°2 on page 72), but is not sufficient to restore the concentration of pollutant to the required level.

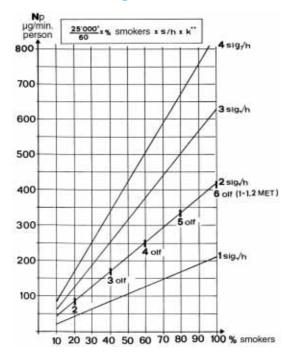
Calculation

DIMENSIONING ITEM

Occupancy category	OFFI	CE
Building size	Vol	70 m ³
Number of occupants		4
% smokers	%	50
Number of cigarettes/hour/smoker		1
Pollutant outdoor air concentration	Co	10 $\mu g/m^3$ (outdoor air filtered)
Outdoor air/person	Vo	0.6 m³/min.


REQUESTED CONCENTRATIONS

Carbon dioxide (CO₂) Indoor particle concentration 0.1% (1.000ppm) (MAX ASHRAE STD 62-89) 60 μg/m³ MAX (< PM 10 -WHO-) **CRYSTALL FS**



2) CO₂ room concentration with different outdoor air flows

3) Pollutant production rate from cigarette smoke

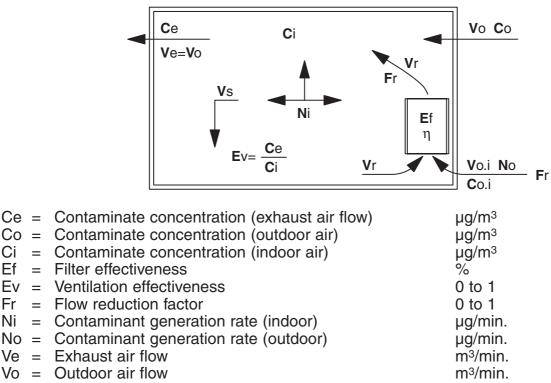
- * = Average quantity per cigarette of particulate (Leaderer and Cain 1983)
- ** = K empirical constant (setting and plating factor A.E.Wheeler 1988)

(Vo=m³/min)

Answer

TO ACHIEVE THE REQUIRED ACCEPTABILITY VALUES IN THE AIR IN THE ROOM, TWO POSSIBLE SOLUTIONS WILL BE ANALYSED

Solution "A" -The required concentrations of pollutants will be obtained only through dilution by bringing into the room a certain quantity of outdoor air (Vo) which, in turn, contains a concentration of particles: $10 \mu g/m^3$ (Co).


THEREFORE: Outdoor air flow rate? Supply air flow rate?

- (Vs=m³/min) The required concentrations of pollutants will be obtained by recirculating the internal air (Vr) and filtering it through the CRYSTALL FS electronic
- filter that, with particles $< 1 \mu m$ (cigarette smoke), has an instrumental efficiency (η) of 90% (Ef). With this solution, the quantity of outdoor air (Vo) required is only that necessary to dilute the CO₂.

THEREFORE:	Outdoor air flow rate?	(Vo=m³/min)
	Recirculated air flow rate?	(Vr=m³/min)
	Supply air flow rate (Vo+Vr)?	(Vs=m³/min)
	Crystall dimensions and size	

System type

Solution "B" -

SOLUTION "A"

Using the sizing data and graph 3 on page 72, the production of pollutant (smoke) per person (Np) or per m³ (N), must be calculated; we will thus obtain the total indoor production of particles (Ni).

Therefore: 4 people, 50% smokers, 1 cigarette/hour, Vol. 70m³

(Np) 105 μ g/min. per person 105x4=420 μ g/min. (Ni) (N) 6 μ g/min. per m³ 70x6=420 μ g/min. (Ni)

 $Ci = N \cdot T = 6x60 = 360 \ \mu g/m^3$ where T=60 minutes (1 hour)

Therefore, after one hour we will have a concentration of pollutant particles equal to 360 μ g per m³. The quantity of outdoor air (Vo) necessary to reduce the concentration from 360 μ g/m³ to the required level of 60 μ g/m³ (Ci), keeping in mind however that the concentration of the outdoor air brought into the room is 10 μ g/m³ (Co), can be calculated using the following formula (ASHRAE standard 62/89) which is applicable once the masses have been balanced.

Vo
$$= \frac{\text{Ni}}{\text{Ci-Co}} = \frac{420}{60-10} = 8.4 \text{ m}^3/\text{min.}$$

Thus,

Ci = Co +
$$\frac{Ni}{Vo}$$
 = 10 + $\frac{420}{8.4}$ = 60 µg/m³

With this value of Vo, we obtain a concentration of CO_2 that is much lower than the required level of 0.1% (indeed, 0.43 m³/min. would be sufficient, as may be seen in graph 2 on page 72). In the rest of the calculation, we want to find out how long it takes to reduce the concentration of pollutant from 360 to 60 μ g/m³.

The concentration inside the room will stabilise when the internal production of pollutant added to the pollutant present in the outdoor air is equal to the concentration of air discharged.

In this case, the total pollutant (Nt) is equal to (Ce) = Outdoor concentration.

To the 6 μ g/min. per m³ of pollutant produced by the smokers (N), we must add the pollutant brought in from outdoors (No), which is calculated using the following formula:

No
$$=\frac{\text{Co-Vo}}{\text{Vol}} = \frac{10.8.4}{70} = 1.2 \,\mu\text{g/min. per m}^3$$

hence the total pollutant (Nt) is:

Nt = N + No = 6 + 1.2 = 7.2 μ g/min. per m³

With a ventilation effectiveness (Ev) = 1, we have:

 $Nt = Ce = \frac{Ct \cdot Ve}{Vol} = \frac{360 \cdot 8.4}{70} = -43.2 \ \mu g/m^3$

Initially, the concentration of the pollutant in the discharged air (Nt=Ce) is 43.2 μ g/m³. To balance the masses we need to modify this value to 7.2 μ g/m³, which is the total production:

Nt = $\frac{\text{Ci-Vo}}{\text{Vol}} = \frac{60.8.4}{70} = 7.2 \,\mu\text{g/m}^3$

The time required for this to happen can be calculated by applying the following formula:

$$T = \frac{\text{Log}\left\{\text{Cin} - \left[\text{Cin} x \left(1 - \frac{\text{FF}}{\text{Vol}}\right) + \text{Nt}\right]\right\} - \text{Log}\left(\frac{\text{Ci} - \text{Nt}}{1 - \frac{\text{FF}}{\text{Vol}}} - \text{Ci}\right)}{\text{Log}\left(\frac{1}{1 - \frac{\text{FF}}{\text{Vol}}}\right) + 1}$$

In this specific case, to obtain +5% of the required concentration (Ci=60+3 μ g/m³) the time required in minutes would be:

$$T = \frac{\text{Log}\left\{360 - \left[360x\left(1 - \frac{8.4}{70}\right) + 7.2\right]\right\} - \text{Log}\left(\frac{63 - 7.2}{0.88} - 63\right)}{\text{Log}\left(\frac{1}{0.88}\right)} + 1 = 36 \text{ min.}$$

where FF (filtering factor) = $Vo \cdot \eta = 8.4 \cdot 1 = 8.4$

The time required to reduce the particles is directly proportional to the total output (Ni) and inversely proportional to the filtering factor (FF).

In conclusion, to reduce the initial concentration from 360 μ g/m³(Cin) to the required value of 60 μ g/m³ (Ci) with a concentration of CO₂ below the required 0.1% (see graph 2 on page 72), 8.4 m³/min. of outdoor air is required, i.e., 2.1 m³/min. per person (8.4:4).

Diluting the pollutants with air for renewal only, the total air flow (Vs) will be equal to the outdoor air flow (Vs=Vo).

SOLUTION "B"

Using the CRYSTALL-SABIANA filter air conditioner fitted with an electronic filter capable of stopping particles with a size less than 1 μ m (smoke), with an efficiency η 90% (Ef=0.9) only the minimum quantity of outdoor air required by the ASHRAE Standard 62-89 will be used, i.e., 0.6 m³/min. per person (see page 69).

Indeed, this minimum quantity can maintain the level of CO_2 below 0.1% as required and as shown in graph 3 (see page 72).

The required concentration of particles is obtained by recirculating the indoor air and filtering it.

The quantity of recirculated air (Vr) and the efficiency of the electronic filter (Ef) will allow the choice of the CRYSTALL filter air conditioner best suited for the purpose by applying the following formulas:

 $Vr = \frac{Ni - Vo \cdot Ev (Ci - Co)}{Fr \cdot Ev \cdot Ef \cdot Ci} = \frac{420 - 0.6 \cdot 4 (60 - 10)}{0.6 \cdot 0.9 \cdot 60} = 9.25 \text{ m}^{3}/\text{min.}$

 $Ci = \frac{Ni + Ev \cdot Vo \cdot Co}{Ev \cdot (Vo + Vr \cdot Ef \cdot Fr)} = \frac{420 + 2.4 \cdot 10}{2.4 + 9.25 \cdot 0.9 \cdot 0.6} = 60 \ \mu g/m^3$

The outdoor air intake therefore decreases from 2.1 m³/min. per person to 0.6 m³/min. per person.

Where: Fr = running time of CRYSTALL (0.6=60%)

Ev = ventilation effectiveness (Ce:Ci=1)

Vo = outdoor air flow 0.6 m³/min. per person (0.6.4=2.4)

As in the previous case, the time required to obtain 5% more than the required concentration $(60+3=63 \mu g/m^3)$.

$$T = \frac{\text{Log}\left\{360 - \left[360x\left(1 - \frac{10.73}{70}\right) + 18\right]\right\} - \text{Log}\left(\frac{63 - 7.2}{0.847} - 63\right)}{\text{Log}\left(\frac{1}{0.847}\right)} + 1 = 18 \text{ min.}$$

The filtering factor should be calculated as follow:

 $FF = Vr \cdot Vo = 9.25 \cdot 0.9 + 2.4 = 10.73$

The 9.25 m³/min. of recirculated air (Vr) required to maintain the internal concentration of particles (Ci) to the required value may be generated by the following CRYSTALL filter air conditioners:

1°) 1 size 3 FSC unit at max speed 1x10=10 m³/min.

- 2°) 2 size 1 FSC units at max speed 2x5=10 m³/min.
- 3°) 2 size 2 FSC units at max speed 2x6=12 m³/min.

If size 2 CRYSTALL appliances are used at the highest speed and therefore with a delivery value of 7.5 m³/min., there should be an increase in the speed of particle reduction, thus:

 $FF = 15 \cdot 0.9 + 2.4 = 15.9$

which would lead to a reduction of the final Ci, or to the achievement of the required concentration in less time.

Thus:

$$T = \frac{\text{Log}\left\{360 - \left[360x\left(1 - \frac{15.9}{70}\right) + 7.2\right]\right\} - \text{Log}\left(\frac{63 - 7.2}{0.773} - 63\right)}{\text{Log}\left(\frac{1}{0.773}\right)} + 1 = 8.47 \text{ min.}$$

CRYSTALL with outdoor air intake damper

If the CRYSTALL filter air conditioner is fitted with an outdoor air mixing and intake damper, the air renewal quantity (Vos) will increase, in inverse proportion to the air flow reduction factor (Fr), or:

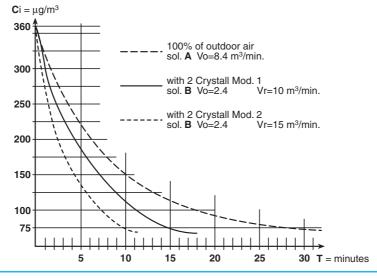
Vos = Vo : Fr = 2.4 : 0.6 = 4 m³/min. (Fr 0.6=60%)

Therefore, the air recirculation quantity (Vrs) is modified and becomes:

 $Vrs = \frac{N - Vos \cdot Fr \cdot [Ci - (1 - Ef) \cdot Co]}{Fr \cdot Ef \cdot Ci} = \frac{420 - 4 \cdot 0.6 \cdot (60 - 0.1 \cdot 10)}{0.6 \cdot 0.9 \cdot 60} = 8.6 \text{ m}^{3}/\text{min.}$

The fan convector must dove the total air quantity (Vs) which corresponds to the sum of the recirculated air plus the outdoor air and, therefore:

 $Vs = Vrs + Vos = 8.6 + 4 = 12.6 \text{ m}^3/\text{min.}$


Comparison

		OUTDO	OR AIR	RECIRCULAT	ED AIR FLOW	SUPPLY A	AIR FLOW	CRYST	ALL FSC-	FST SEL	ECTION
SO	LUTIONS	Vo	Fr	Vr	Fr	Vs	Fr	MOD. 1	MOD. 2	MOD. 3	MOD. 4
A	100% outdoor air	8.4	1	-	-	8.4	1	-	-	-	-
В	with CRYSTALL	2.4	1	9.25	0.6	11.65	0.6	N° 2 max speed	N° 2 av. speed	N° 1 max speed	N° 1 av. speed
	with CRYSTALL DAMPER	4	0.6	6	0.6	12.6	0.6	N° 2 max speed	N° 2 av. speed	N° 1 max speed	N° 1 av. speed

CRYSTALL FS

4) Graph illustrating particle reduction time with the two solutions proposed

Simplified method for choosing equipment

The following table, based on the size of the room and the number of people present, allows you to choose the most suitable size assuming the existence of certain pollution conditions. It should be noted that if the convector fan is fitted with a water delivery valve, a smaller sized unit can be chosen because, as the fan is always on, filtering effectiveness increases (Fr=1).

Smokers 50% 1 cigarette/hour per smoker Concentration required $CO_2 = 0.1\%$ Particle concentration required = 60 µg/m³

CRYS	STALL FSC	C-FST	CR	YSTALL F	SR	WITHOU	T VALVE	WITH	ALVE
SIZE	MOTOR SPEED	AIR FLOW m ³ /h	SIZE	MOTOR SPEED	AIR FLOW m ³ /h	NUMBER OF OCCUPANTS	BUILDING * SIZE (m ³)	NUMBER OF OCCUPANTS	BUILDING * SIZE (m ³)
				min	110	max 1	max 30	max 2	max 30
			FSR 1	med	150	1	40	2	40
			10111	max	180	1	45	2	45
				min	160	1	42	2	42
FSC-FST	min	190	FSR 2	med	200	2	50	3	50
F3C-F31	med	240		max	250	2	65	3	65
1	max	300				2	75	4	75
				min	230	2	60	3	60
FSC-FST	min	290	FSR 3	med	290	2	73	4	73
	med	360		max	360	3	90	5	90
2	max	450				4	115	6	115
				min	320	3	80	4	80
FSC-FST	min	380	FSR 4	med	400	3	100	5	100
	med	480		max	500	4	125	6	125
3	max	600				5	150	8	150
FSC-FST	min	480				4	120	6	120
_	med	600				5	150	8	150
4	max	750				6	190	10	190
FSC-FST	min	650				5	170	8	170
	med	800				6	200	10	200
5	max	1000				8	250	12	250
FSC 6	min	750				6	190	10	190
	med	950				7	240	12	240
	max	1200				9	300	15	300
FSC 7	min	850				7	220	11	220
	med	1100				8	280	14	280
	max	1400				11	350	17	350

* Assumption with an average air charge of 4 volumes/hour.

N.B.: In the case of the fan convector not fitted with a valve, it is assumed that the motor will be running 60% of the time, as it is regulated by the room thermostat.

Construction features of CRYSTALL FS

Crystall FS

The Crystall FS electronic filtering system consists of two parts: the first is a **plate type electronic active filter** and is fitted in the suction section of the fan convector, while the second is an **electronic control and regulation board**. All electrical connections are made during production. The installation of the FuturaSabiana fan convector incorporating the Crystall electronic filter is therefore similar to that of a normal fan convector; the only difference is the installation height, for which the filter dimensions must taken into account.

CRYSTALL FS

Crystall FS may be installed on the **entire range and on** all versions of the FuturaSabiana fan convector.

Active plate type electronic filter

The filtering element consists of two sections: the first consists of electrodes and insulating elements, forming a self-supporting ionising frame, while the second consists of special reliable heavy duty aluminium extruded profiles (collector). The two sections are installed in an extractable drawer mounted on lateral telescopic guides to make the extraction and maintenance of the filter easier. The extraction of the drawer actuates a safety microswitch that cuts off the voltage supply to the electrodes.

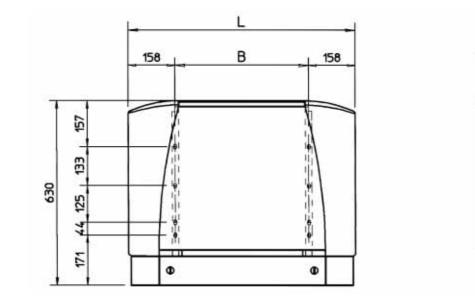
A LED indicates the correct operation of the filter and any need to clean it (the LED flashes on and off). The collector can be cleaned by washing with water and ordinary detergents or steam jets (please consult the maintenance manual for further details).

Electronics board

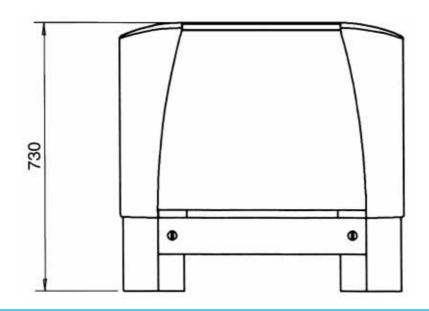
Controls and regulates all functions of the electronic filter. It is appropriately protected against any operating defects of the electronic filter. It supplies a constant voltage to the electrodes when the mains supply voltage varies (\pm 15%). The supply transformer is constructed with its primary and secondary coils physically separated and wound onto separate cores.

The energy consumption depends on the size of the fan convector on which the filter is mounted, with a maximum value of about 0.02 kW.

The technical features of the various components of the fan convector, such as the casing, the internal loadbearing structure, the mechanical filter, the ventilating unit and accessories are described in this catalogue respectively in the parts referring to the FSC range (centrifugal fan), the FST range (tangential fan) and the FSR range (tangential fan for homes). The control and regulation controls are described instead on page 82 and the following pages.

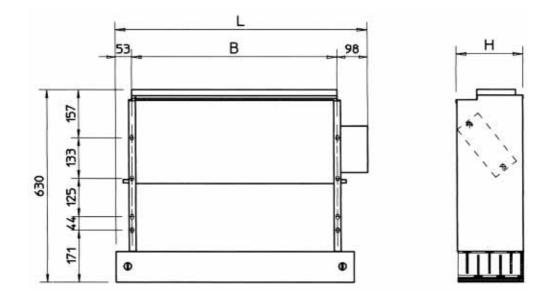


н

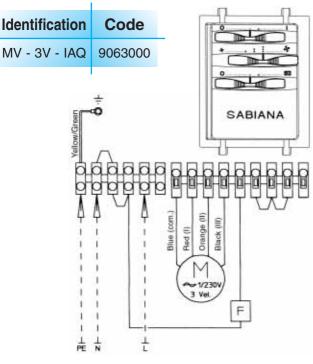


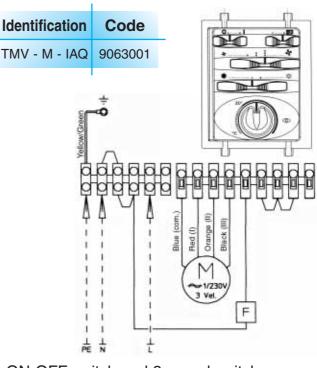
Dimensions and Weight

VERSION							MV -	MO								Μ	V	
RANGE	FSC FST	FSC FST	FSC FST		FSC FST	FSC FST	FSC FST	FSC FST	FSC FST	FSC FST	FSC	FSC	FSC	FSC	FSR	FSR	FSR	FSR
MOD.	13	14	23	24	33	34	43	44	53	54	63	64	73	74	1	2	3	4
Kg	19	21	25	28	29	32	30	33	36	40	46	52	47	53	15	17	23	27
В	45	54	66	69	88	34	88	34	10	99	10	99	10	99	354	454	669	884
L	77	70	98	35	12	00	12	00	14	15	14	15	14	15	670	770	985	1200
н	22	25	22	25	22	25	22	25	22	25	25	55	25	55		18	33	

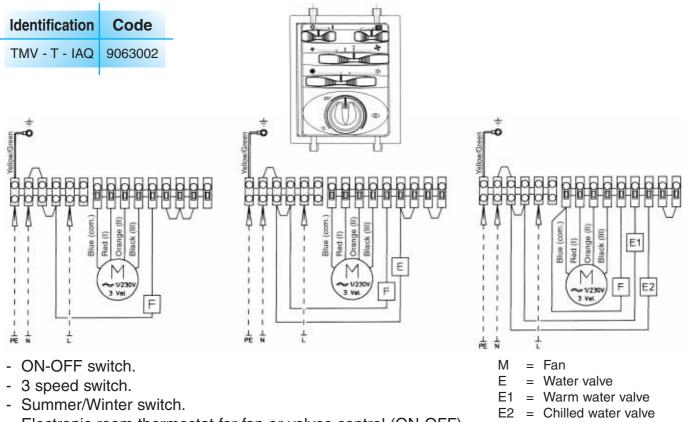

Feet

CRYSTALL FS



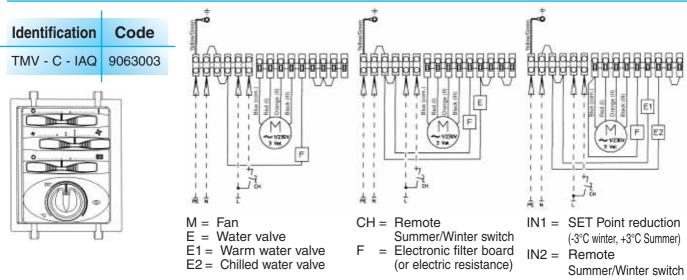

MODEL							IV -	10						
VERSION	FSC FST	FSC	FSC	FSC	FSC									
SIZE	13	14	23	24	33	34	43	44	53	54	63	64	73	74
Kg	18	20	24	27	28	31	29	32	35	39	45	51	46	52
В	45	54	66	69	88	34	88	34	10	99	10	99	10	99
L	60)5	82	20	10	35	10	35	12	50	12	50	12	50
н	21	18	21	18	21	18	2-	18	21	8	24	18	24	18

Integral electronic controls for fan coils with CRYSTALL FS filter

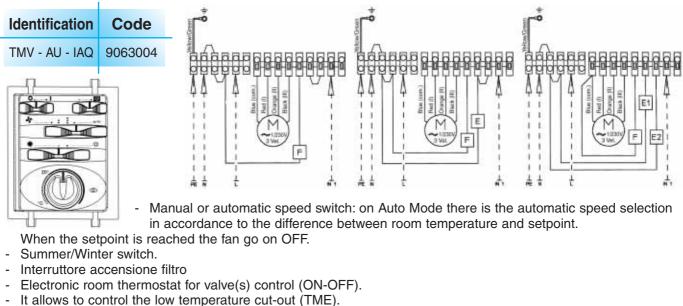


- ON-OFF switch and 3 speed switch.
- Electronic filter ON-OFF switch.

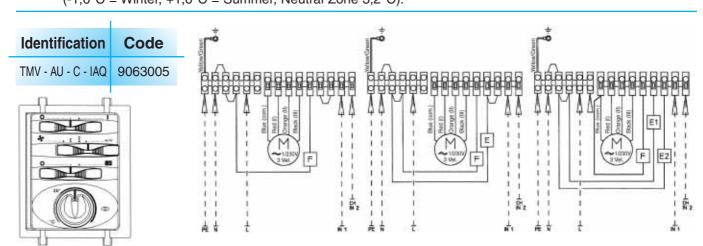
- ON-OFF switch and 3 speed switch.
- Summer/Winter switch.
- Electronic room thermostat for fan control (ON-OFF).
- Electronic filter ON-OFF switch.


- Electronic room thermostat for fan or valves control (ON-OFF).
- It allows to control the low temperature cut-out thermostat (TME).
- Electronic filter ON-OFF switch.
- It allows to control the chilled water valve (ON-OFF) and the heating electric resistance (BEL) only in case that the coil is not feeded with hot water in winter.
- = Electronic filter board

F

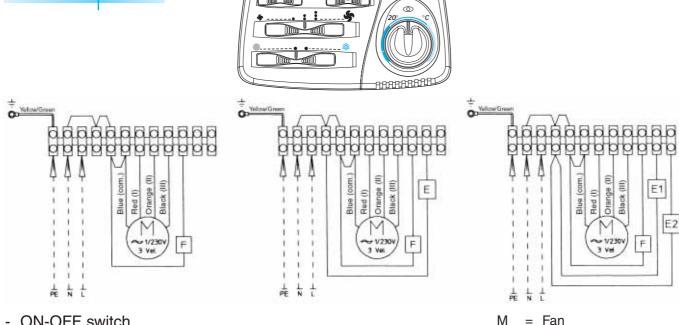

(or electric resistance)

Integral electronic controls for fan coils with CRYSTALL FS filter


Futura <mark>SABIANA</mark>

Same control as the TMV-T-IAQ, but the Summer/Winter switch is centralized and remote, or an automatic change-over is fitted on the water pipe (for 2-tube installations only).

- It allows to control the chilled water valve (ON-OFF) and the heating electric resistance (BEL) only in case that the coil is not feeded with hot water in winter.
- N.B.: with 4 pipe installations and continuous chilled and hot water supply,
 - it allows the automatic summer/winter change-over in accordance to the room temperature $(-1,6^{\circ}C = Winter, +1,6^{\circ}C = Summer, Neutral Zone 3,2^{\circ}C)$.

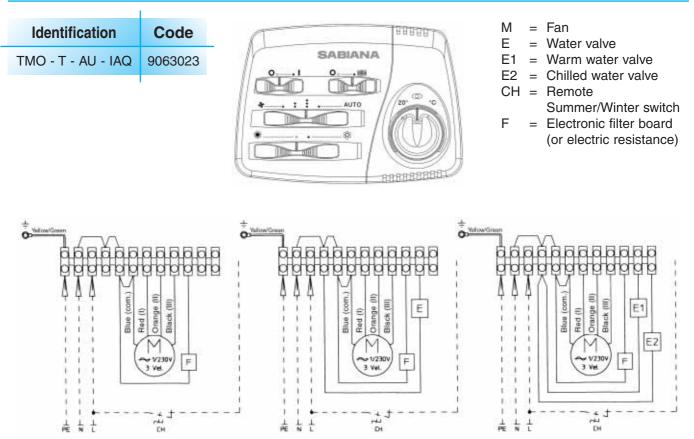


Same control as the TMV-AU-IAQ, but the Summer/Winter switch is centralized and remote, or an automatic change-over is fitted on the water pipe (for 2-tube installations only).

Electronic remote controls for fan coils with CRYSTALL FS filter

Identification	Code		нины
MO - 3V - IAQ	9063020		0l
	I		Yellow/Green
M = Fan E = Water v	alve		
E1 = Water v E1 = Warm w E2 = Chilled v	vater valve		
F = Electror	nic filter board tric resistance)		
	inc resistance)		Blue (com. Blue (com. Drange (II) Black (III)
	witch and 3 speed	switch.	
 Electronic 	filter resistance ON-OF	F switch	1/230V 3 Vet.
	ermostatic control.		
			IRRAR
Identification	Code	SAB	IANA
TMO - T - IAQ	9063021		
	1	+	5 200 °C

- ON-OFF switch.
- 3 speed switch. _
- Summer/Winter switch. -
- Electronic filter or electric resistance ON-OFF switch. -
- Electronic room thermostat for fan or valves control (ON-OFF).
- It allows to control the low temperature cut-out thermostat (TME).
- It allows to control the chilled water valve (ON-OFF) and the heating electric resistance (BEL) only in case that the coil is not feeded with hot water in winter.
- It allows to control the summer or winter cycle with centralized and remote switch, or an automatic change-over fitted on the water pipe (for 2-tube installations only).


= Fan

F

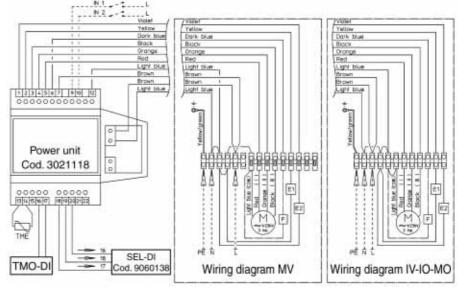
- Е Water valve =
- E1 = Warm water valve
- E2 = Chilled water valve
 - = Electronic filter board (or electric resistance)

Electronic remote controls for fan coils with CRYSTALL FS filter

Futura SABIANA

Same characteristic as TMO-T-IAQ, adding:

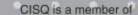
- Manual or automatic speed switch.
- Manual or centralized Summer/Winter switch with dead zone.
- Electronic filter or electric resistance ON-OFF switch.
- Electronic thermostat for fan control (ON-OFF).
- Electronic thermostat for valve(s) control (ON-OFF).
- Simultaneus thermostatic control on the valves and fan.


N.B.: with 4 pipe installations and continuous chilled and hot water supply, it allows the automatic summer/winter change-over in accordance to the room temperature $(-1^{\circ}C = Winter, +1^{\circ}C = Summer, Neutral Zone 2^{\circ}C)$.

Electronic remote controls for fan coils with CRYSTALL FS filter

Identification	Code
TMO - DI	9060163

To be installed on the wall or in the electric switch box.



- Manual or automatic speed switch.
- Manual or centralized Summer/Winter switch.
- Electronic thermostat for fan control (ON-OFF).
- Electronic thermostat for valve(s) control (ON-OFF).
- It allows to control the low temperature cut-out thermostat (TME).
- It allows to control the chilled water valve (ON-OFF) and the heating electric resistance (BEL) only in case that the coil is not feeded with warm water in winter.
- It allows to control the fan and the heating electric resistance.
- It allows to control up to 10 units with SEL-DI speed switch.
- N.B.: with 4 pipe installations and continuous chilled and hot water supply,
 - it allows the automatic summer/winter change-over in accordance to the room temperature $(-1,6^{\circ}C = Winter, +1,6^{\circ}C = Summer, Neutral Zone 3,2^{\circ}C)$.

dentification	Code
SEL-DI	9060138
Speed swite	ch (slave)
t allows to c ip to 10 unit	S
vith only one entralized t	

The descriptions and illustrations provided in this publication are not binding: Sabiana reserves the right, whilst maintaining the essential characteristics of the types described and illustrated, to make, at any time, without the requirement to promptly update this piece of literature, any changes that it considers useful for the purpose of improvement or for any other manufacturing or commercial requirements.

- M = Fan E = Water valve
- E1 = Warm water valve
- E2 = Chilled water valve
- IN1 = Remote
 - Summer/Winter switch
- IN2 = SET Point reduction

www.ignet-certification.com

IQNet, the association of the world's first class certification bodies, is the largest provider of management System Certification in the world. IQNet is composed of more than 30 bodies and counts over 150 subsidiaries

all over the globe.

CERTIFICATO n. CERTIFICATE No.

0545/2

SI CERTIFICA CHE IL SISTEMA DI GESTIONE PER LA QUALITA' DI WE HEREBY CERTIFY THAT THE QUALITY MANAGEMENT SYSTEM OPERATED BY

SABIANA S.p.A.

UNITA' OPERATIVE OPERATIVE UNITS

Via Piave, 53 - 20011 Corbetta (MI) Italia

> E' CONFORME ALLA NORMA IS IN COMPLIANCE WITH THE STANDARD

UNI EN ISO 9001:2000

PER LE SEGUENTI ATTIVITA' FOR THE FOLLOWING ACTIVITIES

EA: 18

Progettazione, produzione e assistenza di apparecchiature per il riscaldamento e il condizionamento dell'aria (aerotermi, termostrisce radianti, ventilconvettori e unità trattamento aria) e canne fumarie.

Design, production and service of heating and air conditioning equipment (unit heaters, radiant panels, fan coil units and air handling units) and chimneys.

> Riferirsi al Manuale della Qualità per l'applicabilità dei requisiti della Norma ISO 9001:2000. Refer to Quality Manual for details of application to ISO 9001:2000 requirements.

Il presente certificato è soggetto al rispetto del regolamento per la certificazione dei sistemi di gestione per la qualità delle aziende. The use and validity of this certificate shall satisfy the requirements of the rules for the certification of company quality management systems.

Data emissione First issue 10/06/1996 Emissione corrente Current issue 10/04/2003 Data di scadenza Expiring date 09/04/2006

ICIM S.p.A. - PIAZZA DIAZ, 2 - 20123 MILANO

CISQ è la Federazione Italiana di Organismi di Certiificazione dei sistemi di gestione aziendale

> CISO is the Italian Federation of management system Certification Bodies

Air Conditioning Futura Fan Coil Units

Sabiana s.p.a. • via Piave, 53 • 20011 Corbetta • Milano • Italy • phone +39.02.97203.1 r.a. / +39.02.97270429 / +39.02.97270576 fax +39.02.9777282 / +39.02.9772820 • www.sabiana.it • info@sabiana.it